Schadt EE, Linderman MD, Sorenson J, Lee L, Nolan GP. Computational solutions to large-scale data management and analysis. Nature reviews Genetics. 2010;11(9):647–57. doi:10.1038/nrg2857.
Article
PubMed Central
CAS
PubMed
Google Scholar
Berger B, Peng J, Singh M. Computational solutions for omics data. Nature reviews Genetics. 2013;14(5):333–46. doi:10.1038/nrg3433.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baro E, Degoul S, Beuscart R, Chazard E. Toward a Literature-Driven Definition of Big Data in Healthcare. BioMed research international. 2015;2015:639021. doi:10.1155/2015/639021.
Article
PubMed Central
PubMed
Google Scholar
Wang W, Krishnan E. Big data and clinicians: a review on the state of the science. JMIR medical informatics. 2014;2(1):e1. doi:10.2196/medinform.2913.
Article
PubMed Central
PubMed
Google Scholar
Kidney Disease. Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney international. 2012;2:1–138.
Article
Google Scholar
Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Garcia P, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61. doi:10.2215/cjn.01900214.
Article
PubMed
Google Scholar
Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol. 2013;8(10):1661–9. doi:10.2215/CJN.00270113.
Article
PubMed Central
PubMed
Google Scholar
Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30. doi:10.1053/j.ajkd.2011.10.048.
Article
PubMed
Google Scholar
Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006;69(1):184–9. doi:10.1038/sj.ki.5000032.
Article
CAS
PubMed
Google Scholar
Alkandari O, Eddington KA, Hyder A, Gauvin F, Ducruet T, Gottesman R, et al. Acute kidney injury is an independent risk factor for pediatric intensive care unit mortality, longer length of stay and prolonged mechanical ventilation in critically ill children: a two-center retrospective cohort study. Crit Care. 2011;15(3):R146. doi:10.1186/cc10269.
Article
PubMed Central
PubMed
Google Scholar
Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. Journal of the American Society of Nephrology : JASN. 2005;16(11):3365–70. doi:10.1681/asn.2004090740.
Article
PubMed
Google Scholar
Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371(1):58–66. doi:10.1056/NEJMra1214243.
Article
PubMed
CAS
Google Scholar
Khwaja A. KDIGO Clinical Practice Guidelines for Acute Kidney Injury. Nephron Clin Pract. 2012;120(4):179–84. doi:10.1159/000339789.
Article
Google Scholar
Ftouh S, Lewington A. Prevention, detection and management of acute kidney injury: concise guideline. Clinical medicine (London, England). 2014;14(1):61–5. doi:10.7861/clinmedicine.14-1-61.
Article
Google Scholar
Kellum JA, Bellomo R, Ronco C. Acute Dialysis Quality Initiative (ADQI): methodology. The International journal of artificial organs. 2008;31(2):90–3.
CAS
PubMed
Google Scholar
Mehta RH, Grab JD, O'Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16. doi:10.1161/circulationaha.106.635573.
Article
PubMed
Google Scholar
Thakar CV, Arrigain S, Worley S, Yared JP, Paganini EP. A clinical score to predict acute renal failure after cardiac surgery. Journal of the American Society of Nephrology : JASN. 2005;16(1):162–8. doi:10.1681/asn.2004040331.
Article
PubMed
Google Scholar
Palomba H, de Castro I, Neto AL, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS Score. Kidney Int. 2007;72(5):624–31. doi:10.1038/sj.ki.5002419.
Article
CAS
PubMed
Google Scholar
Wijeysundera DN, Karkouti K, Dupuis JY, Rao V, Chan CT, Granton JT, et al. Derivation and validation of a simplified predictive index for renal replacement therapy after cardiac surgery. Jama. 2007;297(16):1801–9. doi:10.1001/jama.297.16.1801.
Article
CAS
PubMed
Google Scholar
Brown JR, Cochran RP, Leavitt BJ, Dacey LJ, Ross CS, MacKenzie TA, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation. 2007;116(11 Suppl):I139–43. doi:10.1161/circulationaha.106.677070.
PubMed
Google Scholar
Aronson S, Fontes ML, Miao Y, Mangano DT. Risk index for perioperative renal dysfunction/failure: critical dependence on pulse pressure hypertension. Circulation. 2007;115(6):733–42. doi:10.1161/circulationaha.106.623538.
Article
PubMed
Google Scholar
Mehran R, Aymong ED, Nikolsky E, Lasic Z, Iakovou I, Fahy M, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. Journal of the American College of Cardiology. 2004;44(7):1393–9. doi:10.1016/j.jacc.2004.06.068.
PubMed
Google Scholar
Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31. doi:10.1186/cc5713.
Article
PubMed Central
PubMed
Google Scholar
Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative w. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12. doi:10.1186/cc2872.
Article
PubMed Central
PubMed
Google Scholar
Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35. doi:10.1038/sj.ki.5002231.
Article
CAS
PubMed
Google Scholar
Kristovic D, Horvatic I, Husedzinovic I, Sutlic Z, Rudez I, Baric D, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interactive cardiovascular and thoracic surgery. 2015;21(3):366–73. doi:10.1093/icvts/ivv162.
Article
PubMed
Google Scholar
Leedahl DD, Frazee EN, Schramm GE, Dierkhising RA, Bergstralh EJ, Chawla LS, et al. Derivation of urine output thresholds that identify a very high risk of AKI in patients with septic shock. Clin J Am Soc Nephrol. 2014;9(7):1168–74. doi:10.2215/cjn.09360913.
Article
PubMed Central
PubMed
Google Scholar
Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014;9(1):12–20. doi:10.2215/CJN.02730313.
Article
PubMed Central
CAS
PubMed
Google Scholar
Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85(3):659–67. doi:10.1038/ki.2013.349.
Article
PubMed Central
PubMed
Google Scholar
Kandler K, Jensen ME, Nilsson JC, Moller CH, Steinbruchel DA. Acute kidney injury is independently associated with higher mortality after cardiac surgery. Journal of cardiothoracic and vascular anesthesia. 2014;28(6):1448–52. doi:10.1053/j.jvca.2014.04.019.
Article
PubMed
Google Scholar
Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23. doi:10.1007/s00134-015-3934-7.
Article
PubMed
Google Scholar
Mehta RH, Grab JD, O'Brien SM, Bridges CR, Gammie JS, Haan CK, et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation. 2006;114(21):2208–16. doi:10.1161/CIRCULATIONAHA.106.635573.
Article
PubMed
Google Scholar
Fortescue EB, Bates DW, Chertow GM. Predicting acute renal failure after coronary bypass surgery: cross-validation of two risk-stratification algorithms. Kidney Int. 2000;57(6):2594–602. doi:10.1046/j.1523-1755.2000.00119.x.
Article
CAS
PubMed
Google Scholar
Englberger L, Suri RM, Li Z, Dearani JA, Park SJ, Sundt TM, et al. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am J Kidney Dis. 2010;56(4):623–31. doi:10.1053/j.ajkd.2010.04.017.
Article
PubMed
Google Scholar
Kiers HD, van den Boogaard M, Schoenmakers MC, van der Hoeven JG, van Swieten HA, Heemskerk S, et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury. Nephrol Dial Transplant. 2013;28(2):345–51. doi:10.1093/ndt/gfs518.
Article
PubMed
Google Scholar
Uchino S, Kellum J, Bellomo R, Doig G, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. Jama. 2005;294(7):813–8. doi:10.1001/jama.294.7.813..
Article
CAS
PubMed
Google Scholar
Chawla LS, Davison DL, Brasha-Mitchell E, Koyner JL, Arthur JM, Shaw AD, et al. Development and standardization of a furosemide stress test to predict the severity of acute kidney injury. Crit Care. 2013;17(5):R207. doi:10.1186/cc13015.
Article
PubMed Central
PubMed
Google Scholar
Kane-Gill SL, Sileanu FE, Murugan R, Trietley GS, Handler SM, Kellum JA. Risk factors for acute kidney injury in older adults with critical illness: a retrospective cohort study. Am J Kidney Dis. 2015;65(6):860–9. doi:10.1053/j.ajkd.2014.10.018.
Article
PubMed
Google Scholar
Forni LG, Dawes T, Sinclair H, Cheek E, Bewick V, Dennis M, et al. Identifying the patient at risk of acute kidney injury: a predictive scoring system for the development of acute kidney injury in acute medical patients. Nephron Clin Pract. 2013;123(3–4):143–50. doi:10.1159/000351509.
Article
PubMed
Google Scholar
Soto K, Papoila AL, Coelho S, Bennett M, Ma Q, Rodrigues B, et al. Plasma NGAL for the diagnosis of AKI in patients admitted from the emergency department setting. Clin J Am Soc Nephrol. 2013;8(12):2053–63. doi:10.2215/CJN.12181212.
Article
PubMed Central
CAS
PubMed
Google Scholar
Medha S. A, Pandey RM, Sawhney C, Upadhayay AD, Albert V. Incidence, clinical predictors and outcome of acute renal failure among North Indian trauma patients. J Emerg Trauma Shock. 2013;6(1):21–8. doi:10.4103/0974-2700.106321.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3), e93460. doi:10.1371/journal.pone.0093460.
Article
PubMed Central
PubMed
CAS
Google Scholar
Kim JM, Jo YY, Na SW, Kim SI, Choi YS, Kim NO, et al. The predictors for continuous renal replacement therapy in liver transplant recipients. Transplant Proc. 2014;46(1):184–91. doi:10.1016/j.transproceed.2013.07.075.
Article
CAS
PubMed
Google Scholar
Demirjian S, Schold JD, Navia J, Mastracci TM, Paganini EP, Yared JP, et al. Predictive models for acute kidney injury following cardiac surgery. Am J Kidney Dis. 2012;59(3):382–9. doi:10.1053/j.ajkd.2011.10.046.
Article
PubMed
Google Scholar
Demirjian S, Chertow GM, Zhang JH, O'Connor TZ, Vitale J, Paganini EP, et al. Model to predict mortality in critically ill adults with acute kidney injury. Clin J Am Soc Nephrol. 2011;6(9):2114–20. doi:10.2215/CJN.02900311.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, et al. Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int. 2006;70(6):1120–6. doi:10.1038/sj.ki.5001579.
Article
CAS
PubMed
Google Scholar
Mehta RL, Pascual MT, Gruta CG, Zhuang S, Chertow GM. Refining predictive models in critically ill patients with acute renal failure. Journal of the American Society of Nephrology : JASN. 2002;13(5):1350–7.
Article
PubMed
Google Scholar
Lins RL, Elseviers M, Daelemans R, Zachée P, Gheuens E, Lens S, et al. Prognostic value of a new scoring system for hospital mortality in acute renal failure. Clin Nephrol. 2000;53(1):10–7.
CAS
PubMed
Google Scholar
Lins RL, Elseviers MM, Daelemans R, Arnouts P, Billiouw JM, Couttenye M, et al. Re-evaluation and modification of the Stuivenberg Hospital Acute Renal Failure (SHARF) scoring system for the prognosis of acute renal failure: an independent multicentre, prospective study. Nephrol Dial Transplant. 2004;19(9):2282–8. doi:10.1093/ndt/gfh364.
Article
CAS
PubMed
Google Scholar
Chang JW, Jeng MJ, Yang LY, Chen TJ, Chiang SC, Soong WJ, et al. The epidemiology and prognostic factors of mortality in critically ill children with acute kidney injury in Taiwan. Kidney Int. 2015;87(3):632–9. doi:10.1038/ki.2014.299.
Article
PubMed
Google Scholar
Poukkanen M, Vaara ST, Reinikainen M, Selander T, Nisula S, Karlsson S, et al. Predicting one-year mortality of critically ill patients with early acute kidney injury: data from the prospective multicenter FINNAKI study. Crit Care. 2015;19:125. doi:10.1186/s13054-015-0848-2.
Article
PubMed Central
PubMed
Google Scholar
Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.
Article
PubMed
Google Scholar
Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25. doi:10.1053/j.ajkd.2009.10.048.
Article
PubMed
Google Scholar
Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD. National Heart Ln, and Blood Institute Acute Respiratory Distress Syndrome Network. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73. doi:10.2215/CJN.08781010.
Article
PubMed Central
PubMed
Google Scholar
Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009;76(4):422–7. doi:10.1038/ki.2009.159.
Article
PubMed
Google Scholar
Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care. 2008;12(3):R74. doi:10.1186/cc6916.
Article
PubMed Central
PubMed
Google Scholar
Lo L, Go A, Chertow G, McCulloch C, Fan D, Ordoñez J, et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 2009;76(8):893–9. doi:10.1038/ki.2009.289.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE. Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int. 2009;76(10):1089–97. doi:10.1038/ki.2009.332.
Article
PubMed
Google Scholar
Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8. doi:10.1038/ki.2011.379.
Article
PubMed Central
PubMed
Google Scholar
Bucaloiu ID, Kirchner HL, Norfolk ER, Hartle JE, Perkins RM. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 2012;81(5):477–85. doi:10.1038/ki.2011.405.
Article
PubMed
Google Scholar
Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch Intern Med. 2011;171(3):226–33. doi:10.1001/archinternmed.2010.514.
Article
PubMed
Google Scholar
Ishani A, Xue J, Himmelfarb J, Eggers P, Kimmel P, Molitoris B, et al. Acute kidney injury increases risk of ESRD among elderly. Journal of the American Society of Nephrology : JASN. 2009;20(1):223–8. doi:10.1681/ASN.2007080837.
Article
PubMed Central
PubMed
Google Scholar
Wald R, Quinn R, Luo J, Li P, Scales D, Mamdani M, et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. Jama. 2009;302(11):1179–85. doi:10.1001/jama.2009.1322.
Article
CAS
PubMed
Google Scholar
Hsu CY, Chertow GM, McCulloch CE, Fan D, Ordoñez JD, Go AS. Nonrecovery of kidney function and death after acute on chronic renal failure. Clin J Am Soc Nephrol. 2009;4(5):891–8. doi:10.2215/CJN.05571008.
Article
PubMed Central
PubMed
Google Scholar
Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 2011;79(12):1361–9. doi:10.1038/ki.2011.42.
Article
PubMed Central
PubMed
Google Scholar
Cerdá J, Liu KD, Cruz DN, Jaber BL, Koyner JL, Heung M, et al. Promoting Kidney Function Recovery in Patients with AKI Requiring RRT. Clin J Am Soc Nephrol. 2015;10(10):1859–67. doi:10.2215/CJN.01170215.
Article
PubMed
Google Scholar
Heung M, Chawla LS. Predicting progression to chronic kidney disease after recovery from acute kidney injury. Curr Opin Nephrol Hypertens. 2012;21(6):628–34. doi:10.1097/MNH.0b013e3283588f24.
Article
CAS
PubMed
Google Scholar
Hickson LJ, Chaudhary S, Williams AW, Dillon JJ, Norby SM, Gregoire JR, et al. Predictors of Outpatient Kidney Function Recovery Among Patients Who Initiate Hemodialysis in the Hospital. Am J Kidney Dis. 2014;65(4):592–602. doi:10.1053/j.ajkd.2014.10.015.
Article
PubMed Central
PubMed
Google Scholar
Widrow B, Lehr M. Perceptron, Madaline, and back propagation. Proceedings of IEEE. 1990;78(9):1415–42.
Article
Google Scholar
Brieman L. Random Forests. Machine Learning. 2001;45(1):5–32.
Article
Google Scholar
Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and Regression Trees. Monterey, CA: Wadsworth & Brooks; 1984.
Google Scholar
Bailey K. Typologies and Taxonomies: An Introduction to Classification Techniques. Thousand Oaks, CA: Sage University Paper. Sage Publications; 1994.
Google Scholar
Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43(1):59–69. doi:10.1007/BF00337288.
Article
Google Scholar
Kramer A, Lee D, Axelrod R. Use of a Kohonen Neural Network to Characterize Respiratory Patients for Medical Intervention. In: Malmgren H, Borga M, Niklasson L, editors. Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. London: Springer; 2000. p. 192–6.
Chapter
Google Scholar
Abdi H, Williams LJ. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics. 2010;2(4):433–59. doi:10.1002/wics.101.
Article
Google Scholar
Drucker H, Chris, Kaufman B, Smola A, Vapnik V (eds). Support vector regression machines. Advances in Neural Information Processing Systems 9; 1997.
Hoffman M, Williams M. Electronic medical records and personalized medicine. Hum Genet. 2011;130(1):33–9. doi:10.1007/s00439-011-0992-y.
Article
PubMed
Google Scholar
Hosmer DW, Lemeshow S. Applied logistic regression. Statistics in Medicine, vol 7. New York: Wiley; 1989.
Google Scholar
Fisher RA. The use of multiple measurements in taxonomic problems. Annals of Eugenics. 1936;7(2):179–88. doi:10.1111/j.1469-1809.1936.tb02137.x.
Article
Google Scholar
Frankovich J, Longhurst CA, Sutherland SM. Evidence-Based Medicine in the EMR Era. New England Journal of Medicine. 2011;365(19):1758–9. doi:10.1056/NEJMp1108726.
Article
CAS
PubMed
Google Scholar
Odgers DJ, Dumontier M. Mining Electronic Health Records using Linked Data. AMIA Summits on Translational Science Proceedings. 2015;2015:217–21.
PubMed Central
Google Scholar
Lowe HJ, Ferris TA, Hernandez PM, Weber SC. STRIDE – An Integrated Standards-Based Translational Research Informatics Platform. AMIA Annual Symposium Proceedings. 2009;2009:391–5.
PubMed Central
PubMed
Google Scholar
Murphy SN, Mendis ME, Berkowitz DA, Kohane I, Chueh HC. Integration of Clinical and Genetic Data in the i2b2 Architecture. AMIA Annual Symposium Proceedings. 2006;2006:1040.
PubMed Central
Google Scholar
Jha AK, DesRoches CM, Campbell EG, Donelan K, Rao SR, Ferris TG, et al. Use of electronic health records in U.S. hospitals. N Engl J Med. 2009;360(16):1628–38. doi:10.1056/NEJMsa0900592.
Article
CAS
PubMed
Google Scholar
Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC, et al. Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system. Pediatrics. 2005;116(6):1506–12. doi:10.1542/peds.2005-1287.
Article
PubMed
Google Scholar
Chaudhry B, Wang J, Wu S, Maglione M, Mojica W, Roth E, et al. Systematic review: impact of health information technology on quality, efficiency, and costs of medical care. Ann Intern Med. 2006;144(10):742–52.
Article
PubMed
Google Scholar
Ash JS, Berg M, Coiera E. Some unintended consequences of information technology in health care: the nature of patient care information system-related errors. J Am Med Inform Assoc. 2004;11(2):104–12. doi:10.1197/jamia.M1471.
Article
PubMed Central
PubMed
Google Scholar
Hemp P. Death by information overload. Harv Bus Rev. 2009;87(9):82–9. 121.
PubMed
Google Scholar
Pickering BW, Dong Y, Ahmed A, Giri J, Kilickaya O, Gupta A, et al. The implementation of clinician designed, human-centered electronic medical record viewer in the intensive care unit: a pilot step-wedge cluster randomized trial. Int J Med Inform. 2015;84(5):299–307. doi:10.1016/j.ijmedinf.2015.01.017.
Article
PubMed
Google Scholar
Sittig DF, Ash JS, Zhang J, Osheroff JA, Shabot MM. Lessons from "Unexpected increased mortality after implementation of a commercially sold computerized physician order entry system". Pediatrics. 2006;118(2):797–801. doi:10.1542/peds.2005-3132.
Article
PubMed
Google Scholar
Aronson S, Fontes ML, Miao Y, Mangano DT. Group IotMSoPIR, Foundation IRaE. Risk index for perioperative renal dysfunction/failure: critical dependence on pulse pressure hypertension. Circulation. 2007;115(6):733–42. doi:10.1161/CIRCULATIONAHA.106.623538.
Article
PubMed
Google Scholar
Brown JR, Cochran RP, Leavitt BJ, Dacey LJ, Ross CS, MacKenzie TA, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation. 2007;116(11 Suppl):I139–43. doi:10.1161/CIRCULATIONAHA.106.677070.
PubMed
Google Scholar
Koyner JL, Davison DL, Brasha-Mitchell E, Chalikonda DM, Arthur JM, Shaw AD, et al. Furosemide Stress Test and Biomarkers for the Prediction of AKI Severity. Journal of the American Society of Nephrology : JASN. 2015;26(8):2023–31. doi:10.1681/ASN.2014060535.
Article
CAS
PubMed
Google Scholar
Chong E, Shen L, Poh KK, Tan HC. Risk scoring system for prediction of contrast-induced nephropathy in patients with pre-existing renal impairment undergoing percutaneous coronary intervention. Singapore Med J. 2012;53(3):164–9.
CAS
PubMed
Google Scholar
Cruz DN, Ferrer-Nadal A, Piccinni P, Goldstein SL, Chawla LS, Alessandri E, et al. Utilization of small changes in serum creatinine with clinical risk factors to assess the risk of AKI in critically lll adults. Clin J Am Soc Nephrol. 2014;9(4):663–72. doi:10.2215/CJN.05190513.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao YM, Li D, Cheng H, Chen YP. Derivation and validation of a risk score for contrast-induced nephropathy after cardiac catheterization in Chinese patients. Clin Exp Nephrol. 2014;18(6):892–8. doi:10.1007/s10157-014-0942-9.
Article
PubMed
Google Scholar
Grimm JC, Lui C, Kilic A, Valero V, Sciortino CM, Whitman GJ, et al. A risk score to predict acute renal failure in adult patients after lung transplantation. Ann Thorac Surg. 2015;99(1):251–7. doi:10.1016/j.athoracsur.2014.07.073.
Article
PubMed
Google Scholar
Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. Journal of the American College of Cardiology. 2013;61(22):2242–8. doi:10.1016/j.jacc.2013.03.026.
Article
PubMed
Google Scholar
Ho J, Reslerova M, Gali B, Nickerson PW, Rush DN, Sood MM, et al. Serum creatinine measurement immediately after cardiac surgery and prediction of acute kidney injury. Am J Kidney Dis. 2012;59(2):196–201. doi:10.1053/j.ajkd.2011.08.023.
Article
CAS
PubMed
Google Scholar
Hong SH, Park CO, Park CS. Prediction of newly developed acute renal failure using serum phosphorus concentrations after living-donor liver transplantation. J Int Med Res. 2012;40(6):2199–212.
Article
CAS
PubMed
Google Scholar
Kim MY, Jang HR, Huh W, Kim YG, Kim DJ, Lee YT, et al. Incidence, risk factors, and prediction of acute kidney injury after off-pump coronary artery bypass grafting. Ren Fail. 2011;33(3):316–22. doi:10.3109/0886022X.2011.560406.
Article
PubMed
Google Scholar
Kim WH, Lee SM, Choi JW, Kim EH, Lee JH, Jung JW, et al. Simplified clinical risk score to predict acute kidney injury after aortic surgery. Journal of cardiothoracic and vascular anesthesia. 2013;27(6):1158–66. doi:10.1053/j.jvca.2013.04.007.
Article
PubMed
Google Scholar
Legrand M, Pirracchio R, Rosa A, Petersen ML, Van der Laan M, Fabiani JN, et al. Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study. Crit Care. 2013;17(5):R220. doi:10.1186/cc13041.
Article
PubMed Central
PubMed
Google Scholar
McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med. 2013;173(19):1821–8. doi:10.1001/jamainternmed.2013.9774.
Article
CAS
PubMed
Google Scholar
Ng SY, Sanagou M, Wolfe R, Cochrane A, Smith JA, Reid CM. Prediction of acute kidney injury within 30 days of cardiac surgery. J Thorac Cardiovasc Surg. 2014;147(6):1875–83. doi:10.1016/j.jtcvs.2013.06.049.
Article
PubMed
Google Scholar
Park MH, Shim HS, Kim WH, Kim HJ, Kim DJ, Lee SH, et al. Clinical Risk Scoring Models for Prediction of Acute Kidney Injury after Living Donor Liver Transplantation: A Retrospective Observational Study. PLoS One. 2015;10(8):e0136230. doi:10.1371/journal.pone.0136230.
Article
PubMed Central
PubMed
CAS
Google Scholar
Rahmanian PB, Kwiecien G, Langebartels G, Madershahian N, Wittwer T, Wahlers T. Logistic risk model predicting postoperative renal failure requiring dialysis in cardiac surgery patients. Eur J Cardiothorac Surg. 2011;40(3):701–7. doi:10.1016/j.ejcts.2010.12.051.
PubMed
Google Scholar
Rodríguez E, Soler MJ, Rap O, Barrios C, Orfila MA, Pascual J. Risk factors for acute kidney injury in severe rhabdomyolysis. PLoS One. 2013;8(12):e82992. doi:10.1371/journal.pone.0082992.
Article
PubMed Central
PubMed
CAS
Google Scholar
Romano TG, Schmidtbauer I, Silva FM, Pompilio CE, D'Albuquerque LA, Macedo E. Role of MELD score and serum creatinine as prognostic tools for the development of acute kidney injury after liver transplantation. PLoS One. 2013;8(5):e64089. doi:10.1371/journal.pone.0064089.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schneider DF, Dobrowolsky A, Shakir IA, Sinacore JM, Mosier MJ, Gamelli RL. Predicting acute kidney injury among burn patients in the 21st century: a classification and regression tree analysis. J Burn Care Res. 2012;33(2):242–51. doi:10.1097/BCR.0b013e318239cc24.
Article
PubMed Central
PubMed
Google Scholar
Simonini M, Lanzani C, Bignami E, Casamassima N, Frati E, Meroni R, et al. A new clinical multivariable model that predicts postoperative acute kidney injury: impact of endogenous ouabain. Nephrol Dial Transplant. 2014;29(9):1696–701. doi:10.1093/ndt/gfu200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Slankamenac K, Beck-Schimmer B, Breitenstein S, Puhan MA, Clavien PA. Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery. World J Surg. 2013;37(11):2618–28. doi:10.1007/s00268-013-2159-6.
Article
PubMed
Google Scholar
Tsai TT, Patel UD, Chang TI, Kennedy KF, Masoudi FA, Matheny ME, et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath-PCI Registry. J Am Heart Assoc. 2014;3(6):e001380. doi:10.1161/JAHA.114.001380.
Article
PubMed Central
PubMed
Google Scholar
Wang M, Wang J, Wang T, Li J, Hui L, Ha X. Thrombocytopenia as a predictor of severe acute kidney injury in patients with Hantaan virus infections. PLoS One. 2013;8(1):e53236. doi:10.1371/journal.pone.0053236.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang YN, Cheng H, Yue T, Chen YP. Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology (Carlton). 2013;18(7):489–96. doi:10.1111/nep.12092.
Article
CAS
Google Scholar
Wong B, St Onge J, Korkola S, Prasad B. Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery. Can J Kidney Health Dis. 2015;2:3. doi:10.1186/s40697-015-0037-x.
Article
PubMed Central
PubMed
Google Scholar
Xu X, Ling Q, Wei Q, Wu J, Gao F, He ZL, et al. An effective model for predicting acute kidney injury after liver transplantation. Hepatobiliary Pancreat Dis Int. 2010;9(3):259–63.
PubMed
Google Scholar