Kirk AD. Clinical tolerance 2008. Transplantation. 2009;87:953–5.
Article
PubMed Central
PubMed
Google Scholar
Kirk AD, Mannon RB, Swanson SJ, Hale DA. Strategies for minimizing immunosuppression in kidney transplantation. Transpl Int. 2005;18:2–14.
Article
CAS
PubMed
Google Scholar
Stegall MD, Park WD, Dean PG, Cosio FG. Improving long-term renal allograft survival via a road less traveled by. Am J Transplant. 2011;11:1382–7.
Article
CAS
PubMed
Google Scholar
Tantravahi J, Womer KL, Kaplan B. Why hasn’t eliminating acute rejection improved graft survival? Annu Rev Med. 2007;58:369–85.
Article
CAS
PubMed
Google Scholar
Stegall MD, Park WD, Larson TS, Gloor JM, Cornell LD, Sethi S, et al. The histology of solitary renal allografts at 1 and 5 years after transplantation. Am J Transplant. 2011;11:698–707.
Article
CAS
PubMed
Google Scholar
Lamb KE, Lodhi S, Meier-Kriesche H-U. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011;11:450–62.
Article
CAS
PubMed
Google Scholar
OPTN/SRTR 2010 Annual Data Report. Dept. of Health & Human Services, Health Resources & Services Administration, Healthcare Systems Bureau, Division of Transplantation. Am J Transplant. 2012;12 Suppl 1:22–3.
Google Scholar
Knoll G, Muirhead N, Trpeski L, Zhu N, Badovinac K. Patient survival following renal transplant failure in Canada. Am J Transplant. 2005;5:1719–24.
Article
PubMed
Google Scholar
Kaplan B, Meier-Kriesche H-U. Death after graft loss: an important late study endpoint in kidney transplantation. Am J Transplant. 2002;2:970–4.
Article
PubMed
Google Scholar
Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12:1157–67.
Article
CAS
PubMed
Google Scholar
Einecke G, Sis B, Reeve J, Mengel M, Campbell PM, Hidalgo LG, et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant. 2009;9:2520–31.
Article
CAS
PubMed
Google Scholar
El-Zoghby ZM, Stegall MD, Lager DJ, Kremers WK, Amer H, Gloor JM, et al. Identifying specific causes of kidney allograft loss. Am J Transplant. 2009;9:527–35.
Article
CAS
PubMed
Google Scholar
Matas AJ, Leduc R, Rush D, Cecka JM, Connett J, Fieberg A, et al. Histopathologic clusters differentiate subgroups within the nonspecific diagnoses of CAN or CR: preliminary data from the DeKAF study. Am J Transplant. 2010;10:315–23.
Article
CAS
PubMed
Google Scholar
Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RD, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349:2326–33.
Article
CAS
PubMed
Google Scholar
Nickerson P, Jeffery J, Gough J, McKenna R, Grimm P, Cheang M, et al. Identification of clinical and histopathological risk factors for diminished renal function 2 years post-transplant. J Am Soc Nephrol. 1998;9:482–7.
CAS
PubMed
Google Scholar
Grimm PC, Nickerson P, Gough J, McKenna R, Stern E, Jeffery J, et al. Computerized image analysis of Sirius Red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J Am Soc Nephrol. 2003;14:1662–8.
Article
PubMed
Google Scholar
Cosio FG, Grande JP, Wadei H, Larson TS, Griffin MD, Stegall MD. Predicting subsequent decline in kidney allograft function from early surveillance biopsies. Am J Transplant. 2005;5:2464–72.
Article
PubMed
Google Scholar
Moreso F, Ibernon M, Gomà M, Carrera M, Fulladosa X, Hueso M, et al. Subclinical rejection associated with chronic allograft nephropathy in protocol biopsies as a risk factor for late graft loss. Am J Transplant. 2006;6:747–2.
Article
CAS
PubMed
Google Scholar
Loupy A, Vernerey D, Tinel C, Aubert O, Duong van Huyen JP, Rabant M, et al. Subclinical rejection phenotypes at 1 year post-transplant and outcome of kidney allografts. J Am Soc Nephrol. 2015;26:1721-31.
Szederkényi E, Iványi B, Morvay Z, Szenohradszki P, Borda B, Marofka F, et al. Treatment of subclinical rejection injuries detected by protocol biopsy improves the long-term kidney allograft function: a single center prospective randomized clinical trial. Transplant Proc. 2011;43:1239–43.
Article
PubMed
Google Scholar
Rush D, Nickerson P, Gough J, McKenna R, Grimm P, Cheang M, et al. Beneficial effects of treatment of early subclinical rejection: a randomized study. J Am Soc Nephrol. 1998;9:2129–34.
CAS
PubMed
Google Scholar
Kurtkoti J, Sakhuja V, Sud K, et al. The utility of 1- and 3-month protocol biopsies on renal allograft function: a randomized controlled study. Am J Transplant. 2008;8:317–23.
Article
CAS
PubMed
Google Scholar
Ho J, Wiebe C, Gibson IW, Rush DN, Nickerson PW. Immune monitoring of kidney allografts. In Translation Series. Am J Kidney Dis. 2012;60:629–40.
Article
CAS
PubMed
Google Scholar
Parikh CR, Thiessen-Philbrook H. Key concepts and limitations of statistical methods for evaluating biomarkers of kidney disease. J Am Soc Nephrol. 2014;25:1621–9.
Article
PubMed Central
PubMed
Google Scholar
Hirt-Minkowski P, Amico P, Ho J, Gao A, Bestland J, Hopfer H, et al. Detection of clinical and subclinical tubulo-interstitial inflammation by the urinary CXCL10 chemokine in a real-life setting. Am J Transplant. 2012;12:1811–23.
Article
CAS
PubMed
Google Scholar
Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant. 2013;13:2634–44.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schaub S, Nickerson P, Rush D, Mayr M, Hess C, Golian M, et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant. 2009;9:1347–53.
Article
CAS
PubMed
Google Scholar
Ho J, Rush DN, Karpinski M, Storsley L, Gibson IW, Bestland J, et al. Validation of urinary CXCL10 as a marker of borderline, subclinical and clinical tubulitis. Transplantation. 2011;92:878–82.
Article
CAS
PubMed
Google Scholar
van Ham SM, Heutinck KM, Jorritsma T, Bemelman FJ, Strik MC, Vos W, et al. Urinary granzyme A mRNA is a biomarker to diagnose subclinical and acute cellular rejection in kidney transplant recipients. Kidney Int. 2010;78:1033–40.
Article
PubMed
Google Scholar
Nankivell BJ, Alexander SI. Rejection of the kidney allograft. New Eng J Med. 2010;363:1451–62.
Article
CAS
PubMed
Google Scholar
Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol. 2008;26:389–420.
Article
CAS
PubMed Central
PubMed
Google Scholar
Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. New Engl J Med. 2001;344:947–54.
Article
CAS
PubMed
Google Scholar
Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. New Engl J Med. 2005;353:2342–51.
Article
CAS
PubMed
Google Scholar
Aquino-Dias EC, Joelsons G, da Silva DM, Berdichevski RH, Ribeiro AR, Veronese FJ, et al. Non-invasive diagnosis of acute rejection in kidney transplants with delayed graft function. Kidney Int. 2008;73:877–84.
Article
CAS
PubMed
Google Scholar
Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. New Engl J Med. 2013;369:20–31.
Article
CAS
PubMed Central
PubMed
Google Scholar
Schaub S, Hirt-Minkowski P. Urinary-cell mRNA and acute kidney-transplant rejection. New Engl J Med. 2013;369:1858.
Article
CAS
PubMed
Google Scholar
Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest. 1998;101:746–54.
Article
CAS
PubMed Central
PubMed
Google Scholar
El-Sawy T, Fahmy NM, Fairchild RL. Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol. 2002;14:562–8.
Article
CAS
PubMed
Google Scholar
Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. J Immunol. 2002;168:3195–204.
Article
CAS
PubMed
Google Scholar
Kanmaz T, Feng P, Torrealba J, Kwun J, Fechner JH, Schultz JM, et al. Surveillance of acute rejection in baboon renal transplantation by elevation of interferon-γ inducible protein-10 and monokine induced by interferon-γ in urine. Transplantation. 2004;78:1002–7.
Article
CAS
PubMed
Google Scholar
Tatapudi RR, Muthukumar T, Dadhania D, Ding R, Li B, Sharma VK, et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IP-10 and CXCR3 in urine. Kidney Int. 2004;65:2390–7.
Article
CAS
PubMed
Google Scholar
Hu H, Kwun J, Aizenstein BD, Knechtle SJ. Noninvasive detection of acute and chronic injuries in human renal transplant by elevation of multiple cytokines/chemokines in urine. Transplantation. 2009;87:1814–20.
Article
CAS
PubMed
Google Scholar
Hu H, Aizenstein BD, Puchalski A, Burmania JA, Hamawy MM, Knechtle SJ. Elevation of CXCR3-binding chemokines in urine indicates acute renal-allograft dysfunction. Am J Transplant. 2004;4:432–7.
Article
CAS
PubMed
Google Scholar
Hauser IA, Spiegler S, Kiss E, Gauer S, Sichler O, Scheuermann EH, et al. Prediction of acute renal allograft rejection by urinary monokine induced by IFN-γ (MIG). J Am Soc Nephrol. 2005;16:1849–58.
Article
CAS
PubMed
Google Scholar
Jackson JA, Kim EJ, Begley B, Cheeseman J, Harden T, Perez SD, et al. Urinary chemokines CXCL9 and CXCL10 are noninvasive markers of renal allograft rejection and BK viral infection. Am J Transplant. 2011;11:2228–34.
Article
CAS
PubMed Central
PubMed
Google Scholar
Peng W, Chen J, Jiang Y, Wu J, Shou Z, He Q, et al. Urinary fractalkine is a marker of acute rejection. Kidney Int. 2008;74:1454–60.
Article
CAS
PubMed
Google Scholar
Rabant M, Amrouche L, Lebreton X, Aulagnon F, Benon A, Sauvaget V, et al. Urinary C-X-C motif chemokine 10 independently improves the non-invasive diagnosis of antibody-mediated kidney allograft rejection. J Am Soc Nephrol 2015. doi: 10.1681/ASN.2014080797
Matz M, Beyer J, Wunsch D, Mashreghi MF, Seiler M, Pratschke J, et al. Early post-transplant urinary IP-10 expression after kidney transplantation is predictive of short- and long-term graft function. Kidney Int. 2006;69:1683–90.
Article
CAS
PubMed
Google Scholar
Ho J, Rush DN, Gibson IW, Karpinski M, Storsley L, Bestland J, et al. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts. Transplantation. 2010;90:394–400.
Article
CAS
PubMed
Google Scholar
Lazzeri E, Rotondi M, Mazzinghi B, Lasagni L, Buonamano A, Rosati A, et al. High CXCL10 expression in rejected kidneys and predictive role of pretransplant serum CXCL10 for acute rejection and chronic allograft nephropathy. Transplantation. 2005;79:1215–20.
Article
CAS
PubMed
Google Scholar
Rotondi M, Rosati A, Buonamano A, Lasagni L, Lazzeri E, Pradella F, et al. High pretransplant serum levels of CXCL10/IP-10 are related to increased risk of renal allograft failure. Am J Transplant. 2004;4:1466–74.
Article
CAS
PubMed
Google Scholar
Blydt-Hansen TD, Gibson IW, Gao A, Dufault B, Ho J. Elevated urinary CXCL10-to-creatinine ratio is associated with subclinical and clinical rejection in pediatric renal transplantation. Transplantation. 2015;99:797-804.