Stakeholder engagement, governance structure and multidisciplinary team components
To lead this project, a multidisciplinary project team was assembled consisting of indigenous nurses and a physician with extensive experience in community based screening in First Nations communities (Diabetes Integration Project) [23], adult and pediatric clinician scientists with expertise in nephrology and epidemiology, a project manager, and a communications specialist. Indigenous protocols for public health interventions and research were made a priority within this project team and all data collected maintained strict adherence to OCAP principles (Ownership, Control, Access, and Possession) [24].
We conducted extensive stakeholder engagement in the design, conduct and evaluation component of the FINISHED screening project. This engagement included iterative focus group meetings with individual small gatherings as the project plan was developed and refined in continuous feedback loops with Health Canada and Provincial Renal Program decision makers, Tribal Council Leaders, and Health Director and Chief and Council members of individual communities. Adhering to community protocols, Elders have participated in the design and formative reviews through the life of this initiative. Their participation has been instrumental in opening dialogue around the importance of traditional medicines and ceremony in the context of health and healing for community members.
Canadian First Nations people represent a unique population with regards to history, culture, language, values beliefs and relationships. At the core, critical components to lead a screening campaign such as this must include interprofessional partnerships beginning with indigenous clinicians and scholars working alongside epidemiologists, subspecialty kidney health care teams, and engaged levels of government (Figure 1). While we obtained Research Ethics Board approval from the University of Manitoba for this screening program, this alone is insufficient to conduct a public health initiative of this scope and magnitude in First Nations Communities.
Government participation is complex, as on-reserve care of First Nations people is the responsibility of Health Canada, under the First Nations Inuit Health portfolio. However, the provincially funded health system most often bears the responsibility to provide subspecialty services such as CKD and diabetes prevention and resource intense services such as dialysis. Funding for this initiative was provided by Health Canada, and First Nations governments played a key role in the development, delivery and implementation of FINISHED including the Assembly of Manitoba Chiefs, Tribal Councils, and individual community chief and councils.
This project was led by two key partner organizations: the Diabetes Integration Project and the Manitoba Renal Program. The Diabetes Integration Project partners brought expertise in the use of point of care technology and delivery of care in First Nations Communities. The Manitoba Renal Program nephrologist team members provided expertise in appropriate screening and risk prediction methods and ensured that all intermediate and high risk patients were seen in multidisciplinary CKD prevention clinics in a timely fashion. A steering committee consisting of key stakeholders from the Provincial and Federal Governments, Tribal Councils and Provincial Renal Program met quarterly to provide additional insight and suggestions to help guide the project governance.
Screening setting
As this type of large scale screening and real time risk prediction and counselling had not been undertaken before, a representative sample of different types of communities to screen was preferred. We sought a mix of communities with different distances to urban settings, with some having road access and some accessible primarily by air. Communities of heterogeneous size in terms of geographic area and population were represented. Each of these factors presented unique challenges for operationalizing screening on a large scale.
The screening process
An effective and efficient mass screening program in rural and remote First Nations Communities must be capable of high throughput, and yet still accurately depict individual risk, readily translatable from non-physician clinicians at the point of care, in the field to patients. The process must be designed in such a way that use of equipment, technology and human resources are deployed optimally and appropriate to the varying strengths and challenges found at the community level. Initially, screening teams consisted of a registered nurse, a licensed practical nurse and a health care aid with the relevant clinical qualifications and knowledge of indigenous customs, culture and language. As experience was gained and protocols refined, health care aids were trained to conduct point of care testing and obtain consents and teams were pared down to consist of a registered nurse and health care aid only through a “delegation of function”.
A process engineer was consulted to aid in the design of an efficient screening process. Informed consent was obtained from each patient after watching a short video on the purpose and process for kidney health screening and having the opportunity to ask questions to one of the screening nurses. Consent was obtained for the screening itself, in addition to the ability for the project team to investigate administrative sources of lab and health care utilization data into the future to better monitor patients with CKD. This will allow tracking of patient health outcomes and use of the health care system through longitudinal studies. Consent for children <18 was obtained from their legal guardian prior to screening and assent was obtained from the children themselves.
Screening took place at a variety of different locations including Health Centres, Nursing Stations and schools, depending on the community. In the field, baseline demographic data collected included personal health number, date of birth, and name of home community. A mean of six blood pressures were taken (BPTru Medical Device, Coquitlam, BC) according to best practice as outlined by the Canadian Hypertension Education Program (CHEP) [25]. Height, weight and body mass index were recorded on each patient. Finger prick droplet blood samples were taken (0.1 cc) and analyzed for blood chemistry including creatinine, estimated Glomerular Filtration Rate (eGFR) derived from the Modification of Diet in Renal Disease 4-variable equation [26], calcium, phosphate, albumin and total carbon dioxide (Picollo Xpress©, Abaxis, Union City, CA), and a separate droplet was collected for glycosylated hemoglobin and urine sample was analyzed for urine albumin to creatinine ratio (DCA Vantage ©, Siemens, Erlangen, Germany). All point of care testing equipment was subjected to a comprehensive quality assurance process to ensure the results obtained achieved precision and accuracy calibrated to a main frame laboratory. The internal quality assurance process was completed on a daily basis utilizing human serum samples with pre-defined performance limits and monitored by an external reference method laboratory (Canadian External Quality Assurance Laboratory; Vancouver, Canada).
All patient consents, demographic, blood pressure and biochemical data were entered at the point of care on to a tablet computer (iPad3, Apple, Cupertino, CA), using a secure customized application created specifically for this project by an in-house computer programmer. The data entered would automatically calculate a patient’s five-year risk of kidney failure as calculated by the Kidney Failure Risk Equation (KFRE) [27] for adult patients screened. Using data from the KFRE and a few other parameters such as level of proteinuria, adult (>18 yo) patients were assigned to a category of risk of low, intermediate or high corresponding to their 5 year risk of kidney failure and other parameters such as level of proteinuria for those with eGFR >60 ml/min/m [2]. (Figure 2). Risk based counselling scripts were developed and delivered by the screening teams in real time (Additional file 1).
As the KFRE has not been validated in children, pediatric (<18 yo) patients followed a separate algorithm designed in collaboration with pediatric nephrologist and endocrinologist partners based on best practice and review of current guidelines and literature. These referral pathways were based on clinical parameters including eGFR (calculated by the Schwartz formula [28] proteinuria), and blood pressure percentiles [29] (Figure 3). Children with a HgbA1C > 6.5% were also referred to the Diabetes Education Resource for Children and Adolescents (DER-CA) in Winnipeg.
Based on risk category generated from our algorithms, patients and guardians would receive a risk-based counselling session in real time by the screening nurses. A pre-approved script developed by the multidisciplinary project team for pediatrics was developed for this purpose (Additional file 2). Primary Care providers were sent the results of screening and plan for each patient including specific treatment recommendations for children, although all intermediate and high-risk patients were also immediately referred to a nephrologist directly from the screening results. All nephrology referrals derived from the project were seen within one month of screening. Occasionally, limitations of the point of care equipment in measuring urinary albumin excretion would not allow the team to assign an exact estimate of risk in real time (<5% of cases). In these cases, a provisional risk was assigned to a patient and a urine sample was taken to send to one of the central laboratories for the sample to be re-run and patients were contacted the next week for their final risk assessment. Finally, all adult patients were consented to answer an additional paper based questionnaire exploring in further detail their medical history, social determinants of health and questions concerning their experience with personally mediated racism.
Enhanced screening
Time permitting, a subset of adult patients (1:10) were randomly selected to undergo an “enhanced screening” arm of this intervention. This subset received phlebotomy and urine specimens were collected. Blood specimens were centrifuged and serum supernatant was aliquoted on site in the field, and cold chain was maintained until reaching the −80 freezers at the biobanking facility in Winnipeg on a weekly basis.
Engagement protocols and feedback
Our team relied on and learned from the Diabetes Integration Project’s experience and expertise in gaining access to First Nation communities, specifically in the area of indigenous protocols and contacts for engagement. The principle of community participation was a primary goal of FINISHED. Engagement with Chief and Council, Tribal Council Leaderships, Assembly of Manitoba Chiefs, Federal and Provincial governments and Regional Health Authorities along with inclusion of elders, intense community consultations and dialogue were necessary to deliver a message that complications from CKD were often preventable. It was important that our health care team members (including nephrologists) try to participate in as many of the community engagement events as possible to deliver a message of hope and commitment to the project. Community participants, many for the first time, asked questions directly of physicians about general health concerns and those related to chronic kidney disease. Flexibility to change schedules, address community concerns and be open to the ongoing challenges communities face in their effort to improve health outcomes for members ensured a community centred approach.
A detailed set of Standard Operating Procedures was developed by the Project Leadership Team ensuring that proper protocols were followed within each community screened well in advance of proposed screening dates. Members of the Project Leadership Team (physicians, nurses, project manager) travelled to each community to present to the Chief and Council, Health Portfolio Members, Health Directors and the Aboriginal Diabetes Initiative Worker regarding the project’s purpose and processes, ask specific permission to screen members of the community and provide an interactive opportunity to provide feedback and suggestions. Following this, an advertised Community Town Hall meeting was arranged to present to the Community Members at large and provide opportunity for questions and feedback. To ensure the success of pediatric screening, presentations to the school administration, teachers, and eligible students were also made in several communities by the team, including a pediatric nephrologist. Within a month following these meetings, the screening teams would arrive in the community to begin their activities. Around this time, door hangers were hand delivered to each home reminding community members about location and timing of screening and a provincial and local radio stations were employed to encourage people to come to get screened.
Immediately following screening activities in the Community, reports were prepared for feedback to the Community Leadership. Reports included data on the number of patients screened, their demographics, screening results stratified by risk category and number of referrals made to nephrologists. These reports were provided to Community Leaders in paper forms and the members of the Project Leadership Team travelled back to each Community to provide a presentation and give the opportunity for Community stakeholders to ask questions regarding their results. Permission was obtained from each Community Leadership group to report on aggregate, anonymous data on behalf of the project.