Knowledge translation vs. science translation—a culture reduced to the limited terms of capitalism
If you know how to make excellent “al dente” pasta, that is great knowledge. But that is not science. If you have a sparkling idea how a process might work and some murky thoughts about how to test that—that is science but not knowledge. Science and knowledge are two separate sets, with a substantial overlap. In fact, some elements of the Science set (call it S) will become elements of the Knowledge set (K), and then some elements of the Knowledge set can be translated to elements of Practical use (P). But S is not equal to K (S ≠ K), and S cannot be directly translated to P. Further, there are elements of K, which never have been science, that can be readily translated into useful application. Importantly, by not supporting S, we will not only empty K but will also actively inhibit both the S → K and the K → P transitions because science itself finds ways to facilitate these processes.
Science is a culture and a way of thinking; knowledge is an ordered store of (potentially usable) information. There is nothing wrong with knowledge translation per se, which is undoubtedly a fundamental component of the impact of science on society. However, the dramatic and misleading mental lapse that calls for knowledge translation (KT) but in fact demands science translation (ST) may be an important manifestation of the most dangerous unfolding drama of the information age. Namely, the thought that the concepts of capitalistic production (efficiency, profit, marketability, commercialization, media attention, patent, spin-off company, etc.) should be directly applicable to science (and should be the gold standard with which we measure the value of research!). In other words, the current zeitgeist demands that there be a one-to-one correspondence (to use a basic concept of set theory) between the elements of P and S. Moreover, the demanded correspondence is backward (P → S), so the elements of P should generate the elements of S and justify their value. Again, there is nothing wrong with knowledge translation per se; but it should not be forged to mean science translation (ST is a non-existing concept), should not be forced upon all scientific approaches (as it is the current practice in life sciences), and its subsidization should not jeopardize the support for basic scientific discovery.
The dangers of the current, direct profit-oriented view are manifold, far-reaching, and profound; they are particularly frightening because in our business-centered society, this profit-driven worldview has taken the guise of a self-evident truth. But our contemporary business-minded model is misleading and is not supported by the history of scientific progress; therefore, we scientists are increasingly responsible for informing the public about the mechanisms through which science has generated real breakthroughs. The current dominant view does not tell the real story of how curiosity did not kill the cat but cured the cat. Selecting one of thousands of examples, if Akira Endo had not asked why certain mushrooms are so good at killing their parasites, we would not have statins, which have been shown to reduce cardiovascular death by 30 % (and which might save us from a stroke at the next grant rejection). But seriously, the narrow-minded application of the current approach is a major disservice to society, slowing or diverting the very process which leads to real and translatable solutions to many of the world’s burning problems, a fact made all the more tragic since we live in a time when we have a real chance to achieve these goals. And let me add one more shade to these complexities. There are (were) initiatives which served truly meaningful forms of knowledge translation. One of these was the MD/PhD program, which equipped the doctors of the future with strong training in fundamental science and basic research, allowing them to speak the languages of both theory and practice (and thereby truly translate between these), making them capable of appreciating, generating, and applying science. The recent cancelation of federal support for this program is as irrational and irresponsible as it is hypocritical.
What to fund is a key question, how to fund it is another. Clearly, the absence of predictability of funding decisions (e.g., the uncoupling of good, peer-reviewed scientific output from continued support) together with chronic underfunding has generated an emergent state that can be called the “negative nitrogen balance in research.” Insufficient protein intake results in net protein loss, and hence, negative nitrogen balance. This exact parallel is found in research where insufficient support not only halts progress but generates net losses in terms of termination of highly qualified personnel (e.g., when our best and most productive and knowledgeable technicians become unaffordable), disposal of precious tools (e.g., animal and yeast colonies, libraries, etc.), and huge stretches of time and effort (e.g., the generation and regeneration of never-finalized and therefore perpetually preliminary data for grant applications). Thus, ironically, a system, which puts competitive efficiency on its banner, becomes increasingly inefficient and, to elaborate the metaphor, malnourished.