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Abstract

Background: Left ventricular hypertrophy (LVH) is commonly found in chronic dialysis (CD) recipients, and is
associated with impaired microvascular cardiac perfusion and heart failure. In response to LVH and cardiac ischemia,
early outgrowth pro-angiogenic cellS(EPCs) mobilize from the bone marrow to facilitate angiogenesis and
endothelial repair. In the general population, EPC number and function correlate inversely with cardiovascular risk.
In end-stage renal disease (ESRD), EPC number and function are generally reduced.

Objectives: To test whether left ventricular abnormalities retain their potent ability to promote EPC reparative
responses in the setting of ESRD.

Design: Cross-sectional study.
Setting: St. Michael's Hospital, Toronto, Ontario, Canada.
Patients: 47 prevalent chronic dialysis recipients.

Measurements: (1) circulating CD34" and CD133" EPC number, (2) cultured EPC migratory ability, in vitro differentiation
potential, and apoptosis rate, and (3) cardiac magnetic resonance-measured LV mass, volume and ejection fraction.

Methods: Bivariate correlation analysis was performed with Spearman's rho test.

Results: Of the 47 patients (mean age: 54 + 13 years), the mean delivered urea reduction was 74 + 10 %. Mean LV mass
was 123 + 38 g. Circulating CD34" and CD133" EPCs represented 0.14 % (IQR: 0.05 — 0.29 %) and 0.05 % (IQR: 0.01 - 0.10 %)
of peripheral blood mononuclear cells. There were no significant correlations between any EPC parameter and
measures of LV mass or ejection fraction.

Limitations: Lack of a non-ESRD control population, and the inability to measure all parameters of EPC function due to
limitations in blood sampling. Our inability to measure cardiac VEGF expression prevented an assessment of changes in
cardiac EPC mobilization signals.

Conclusions: These data suggest that in ESRD, the reparative EPC response to cardiac hypertrophy may be blunted.
Further investigation of the effects of uremia on EPC physiology and its relationship to cardiac injury are required.

Keywords: End-stage renal disease, Endothelial progenitor cells, Early outgrowth pro-angiogenic cells, Cardiac magnetic
resonance imaging, Left ventricular hypertrophy
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Contexte: L'hypertrophie ventriculaire gauche (HVG), qui est associée a la perfusion cardiaque microvasculaire
alterée et a l'insuffisance cardiaque, n'est pas rare chez les patients qui recoivent une dialyse chronique. En réponse
a I'HVG et a l'ischémie cardiaque, les cellules proangiogéniques a croissance précoce (CPCP) se mobilisent au sein
de la moelle osseuse afin de faciliter I'angiogenese et la réparation endothéliale. Dans I'ensemble de la population,
le nombre et I'activité des CPCP sont inversement proportionnels au risque cardiovasculaire. Dans le cas
d'insuffisance rénale chronique terminale (IRT), le nombre et I'activité des CPCP sont généralement réduits.

Objectifs: Vérifier si les anomalies du ventricule gauche demeurent aussi efficaces a promouvoir les actions

Contexte: St. Michael's Hospital, a Toronto, en Ontario, au Canada
Participants: 47 cas prévalents de patients qui recoivent une dialyse chronique

Mesures: (1) le nombre de CPCP CD34" et CD133™ en circulation, (2) I'habileté migratoire des CPCP, le potentiel de
différentiation in vitro, le taux d'apoptose, et (3) la mesure de la masse ventriculaire gauche par imagerie cardiaque

Méthodes: L'analyse de la corrélation simple a été effectuée au moyen du coefficient de corrélation des rangs de

Résultats: On a observé une réduction de 74+ 10 % en moyenne parmi les 47 participants (moyenne d'age : 54 +
13 ans). La masse ventriculaire gauche était de 123 +38 g en moyenne. Les CPCP CD34" et CD133" en circulation
représentaient 0,14 % (IQOR : 0,05-0,29 %) et 0,05 % (IOR : 0,01-0,10 %) des cellules mononuclées de sang
périphérique. On n'a observé aucune corrélation substantielle entre les parametres relatifs aux CPCP et les mesures
de la masse ventriculaire gauche, ou la fraction d'éjection.

Limites de I'étude: 'absence d'une population témoin non atteinte d'IRT, de méme que l'inhabilité de mesurer
tous les parametres de l'activité des CPCP, en raison des limites de I'échantillon sanguin. Notre incapacité a mesurer
I'expression du facteur de croissance endothéliale vasculaire nous a empéchés d'effectuer 'analyse des
modifications dans les signaux cardiaques de mobilisation des CPCP.

Conclusions: Ces données suggerent que dans le cas d'une IRT, la réponse réparatrice des CPCP a I'hypertrophie
cardiaque peut étre atténuée. Des observations plus poussées sur les effets de I'urémie sur la physiologie des CPCP
et sur le lien avec les Iésions cardiaques seraient nécessaires.

What was known before

Early outgrowth pro-angiogenic cells (EPCs) are a popu-
lation of bone marrow-derived mononuclear cells with
potent pro-angiogenic activity that are mobilized in re-
sponse to cardiac ischemia, as occurs in the hypertro-
phied left ventricle. Patients with ESRD have reduced
circulating EPC number and function.

What this adds

Our cross-sectional study demonstrates that, in a cohort
of prevalent conventional hemodialysis patients, left
ventricular hypertrophy does not retain its ability to
mobilize functional EPCs. This data adds to the growing
literature documenting the potential adverse cardiovas-
cular effects of ESRD-associated EPC dysfunction.

Background

Left ventricular hypertrophy (LVH) is a common and
well-described traditional risk factor for cardiovascular
disease in both chronic kidney disease (CKD) patients
[1, 2] and the general population [3], being predictive of

major cardiovascular events [3, 4] and subsequent heart
failure due either to diastolic [5] or systolic dysfunction
[6]. A critical component in the pathogenesis of these
LVH-associated complications is the myocardial ische-
mia that arises from the progressive perfusion imbalance
that develops as the left ventricle hypertrophies. This
imbalance develops because of increases in oxygen de-
mand and diffusion distance. While the initial response
to LVH is the induction of compensatory cardiac angio-
genesis, this process falters in later stage disease, leading
to a progressive relative capillary deficit with local and
often diffuse ischemia independent of large vessel dis-
ease that can contribute to both systolic and diastolic
dysfunction [7-10].

Early outgrowth pro-angiogenic cells (EPCs) are a
novel bone marrow-derived population of mononuclear
cells that are mobilized into the systemic circulation in
response to tissue ischemia, contributing to endothelial
repair and regeneration potentially through engraftment
as mature endothelial cells [11, 12] and/or the release of
pro-angiogenic soluble factors with paracrine or even
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endocrine activity [13-17]. Along these lines, in re-
sponse to experimental LVH, EPCs are mobilized into
the circulation, stimulating cardiac angiogenesis to
compensate for the progressive capillary rarefaction and
ischemia that develop in the hypertrophied left ventricle
[18-21]. Underlining the importance of this EPC rep-
arative response, the number of circulating EPCs is in-
dependently and inversely correlated with Framingham
cardiovascular risk and vascular function in the general
population [22].

In both pre-dialysis and dialysis patients with CKD,
circulating EPC number and function are markedly
reduced, suggesting a potential role for impaired EPC
biology as a non-traditional contributor to the pathogen-
esis of CKD-associated cardiovascular disease [23-27].
To date, however, no studies have specifically examined
potential relationships between EPC number and func-
tion, and cardiac structure and function in the ESRD
population, in which LVH and its complications are
common. In this report, we investigated the relationships
between the number and function of circulating EPCs
and LV structure and function in a cohort of prevalent
conventional dialysis patients, using cardiac magnetic
resonance (CMR), the reference standard in cardiac
imaging. We hypothesized that the adverse effects of
uremia on EPC biology would counteract the potent
EPC mobilization effects of cardiac ischemia and LVH,
preventing LV injury-induced mobilization of functional
EPCs.

Methods

Patient population

We performed a cross-sectional study of prevalent
(>3 months) recipients of conventional in-centre he-
modialysis (3x/week, 4 h/session) at St. Michael’s
Hospital in Toronto, Canada. The St. Michael’'s Hospital
research ethics board approved the study protocol, which
adhered to the Declaration of Helsinki, and all patients
provided informed consent.

Cardiac magnetic resonance

Patients underwent cardiac magnetic resonance with a
1.5 Tesla whole-body scanner using a phased-array
cardiac coil and retrospective vector-cardiographic gat-
ing. Images were obtained during breath-holds in end-
expiration with the patient lying supine as previously
described [28].

A blinded cardiologist, experienced in cardiac imaging
(AY) reviewed the cardiac magnetic resonance studies
and completed the image post-processing using offline
commercial software (ViewForum R 4.2, Philips Medical
Systems) [28]. Left ventricular mass, mass index, end
systolic volume, end diastolic volume, and ejection frac-
tion were calculated as previously described [28].
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Flow cytometry

Flow cytometric analysis of circulating pro-angiogenic
CD34" and/or CD133" cells was performed as previously
described [29]. In brief, peripheral venous blood was
collected from study participants. Red blood cells were
lysed twice with lysis buffer. 1 x 10° cells were then re-
suspended in buffer for staining with a FITC-conjugated
mouse monoclonal IgG2a anti-CD34 antibody (Miltenyi
Biotech, Auburn, CA), or a PE-conjugated mouse mono-
clonal IgG1 anti-CD133 antibody (Miltenyi Biotech). All
antibody incubation was carried out for 30 mins at 4 °C in
the dark. Isotype-identical, fluorophore-matched anti-
bodies (FITC-conjugated IgG2a and PE-conjugated IgG1)
served as negative controls (Miltenyi Biotech). Cells
were analyzed using a MACSQuant flow cytometer with
MACSQuant software (MACS Miltenyi Biotech). The
fluorescence intensity of 50,000 cells for each sample
was quantified.

EPC culture

Peripheral blood mononuclear cells were cultured as
described previously, to enrich in a population of pro-
angiogenic mononuclear cells expressing CD34 and/or
CD133 [14]. Peripheral venous blood was collected
from study subjects, and the mononuclear cell fraction
was isolated by Ficoll-Paque density gradient (Becton
Dickinson, Mississauga, Ontario, Canada) centrifuga-
tion and washed 3 times with PBS (Sigma-Aldrich,
Mississauga, Ontario, Canada). Cells were plated at a
density of 10° mononuclear cells/cm® on fibronectin-
coated culture slides (Becton Dickinson) in endothelial cell
basal medium-2 (Lonza, Mississauga, Ontario, Canada)
supplemented with endothelial growth medium Single-
Quots and 20 % fetal bovine serum. Cells were trypsinized
after 10 days of culture and washed with PBS, and then
used for the in vitro studies described below.

Isolectin B4 Ulex europaeus agglutinin | staining

EPCs were stained with the isolectin B4 Ulex europaeus
agglutinin I as previously described [29]. Briefly, EPCs
were seeded on chamber slides and stained with a FITC-
conjugated Ulex europaeus agglutinin I (Sigma-Aldrich)
for 18 hr at room temperature in the dark. Stained cells
were visualized with a Nikon epifluorescence microscope
equipped with a digital camera. Five randomly selected
20X fields were captured, and the total number of posi-
tively stained cells per field was calculated as a percent-
age of the total number of cells per field (stained and
unstained).

VEGF-induced EPC migration assay

VEGF-induced EPC migration was measured using a
modified Boyden chamber as previously described [29]. In
brief, 100 ng/mL of vascular endothelial growth factor-A
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(VEGF) was placed in each well of a Boyden companion
plate. An 8 pm (pore size) insert was placed in each well
containing 500 pL of EPC suspension (5 x 10° cells/mL =
250,000 cells/insert). After 4 h, each Boyden chamber
insert was washed, and cells were fixed and stained
using DiffQuik (Sigma). The membrane was removed
and mounted on a slide for quantification using light
microscopy with a 20X objective.

Measurement of apoptosis

Apoptotic EPCs were quantified by terminal deoxynu-
cleotidyl transferase dUTP nick end labeling (TUNEL)
as previously described [29]. Briefly, 3 x 10° EPCs were
seeded on chamber slides and stained with a TUNEL kit
(Sigma-Aldrich), followed by nuclear counter-staining
with propidium iodide. A non-TUNEL stained negative
control was also performed to rule out non-specific
autofluorescence. Stained cells were visualized with a
Nikon epifluorescence microscope equipped with a digital
camera. Five randomly selected 20X fields were captured,
and the total number of positively stained cells per field
was calculated as a percentage of the total number of cells
per field (stained and unstained).

Statistical analysis

All data are shown as mean + standard deviation (or
median and interquartile range for non-normally dis-
tributed data) unless otherwise stated. Bivariate correl-
ation analysis was performed with Spearman’s rho test.
All statistics were performed using SPSS 15.0 for
Windows (SPSS, Chicago, IL). A p value of < 0.05 was
considered statistically significant.

Results

Demographic and clinical data

Forty seven patients were enrolled in this cross-sectional
study. The mean age of the patients was 54 + 13 years,
with 60 % being male. Clinical, biochemical and he-
matologic parameters of the study population are
presented in Table 1.

Left ventricular structure and function

Left ventricular mass (LVM), left ventricular mass index
(LVMI), LV end systolic and diastolic volumes, and left
ventricular ejection fraction (LVEF) were calculated
based on inter-dialytic cardiac magnetic resonance scans.
All parameters varied greatly across the study population
(Table 2).

Quantification and functional assessment of circulating EPCs
Venous blood was drawn from patients for collection of
peripheral blood mononuclear cells (PBMCs) and subse-
quent EPC analysis. Flow cytometry analysis of circulat-
ing PBMCs revealed significant variation in both single

Page 4 of 10

positive CD34" and CD133" populations, and also double
positive CD34"CD133" cells (Fig. 1). Median circulating
CD34" cell number was 0.14 % of total PBMCs (interquar-
tile range: 0.05-0.29 %), whereas median circulating
CD133" cell number was 0.05 % of total PBMCs (inter-
quartile range: 0.01-0.10 %). Nine patients had no de-
tectable CD133" cells. Similarly, thirty eight patients
had no detectable CD34"CD133" double positive cells,
leaving only nine patients with detectable numbers of
circulating CD347CD133" double positive cells, ranging
from 0.01 to 0.13 % of all PBMCs.

To assess their function, early outgrowth pro-angiogenic
cells (EPCs) were expanded by culturing PBMCs in
endothelial medium for 10 days according to standard
protocols [30]. The percentage of cultured EPCs ex-
pressing surface glycosphingolipids recognized by Ulex
europaeus agglutinin I (UEA-1), a finding characteristic
of EPCs, was also quantified after 10 days of culture as a
measure of in vitro EPC differentiation. UEA-1 staining
demonstrated that 49 + 22 % of cultured PBMCs differ-
entiated into EPCs (Figs. 2a and b).

We next subjected cultured EPCs to assays of angio-
genic function and health. As the chemoattractant-driven
migration of EPCs is critical for both their systemic
mobilization and recruitment to areas of endothelial injury
or angiogenesis, we first used a well-established model of
EPC migration driven by VEGE a potent EPC chemo-
attractant [31]. In these experiments, we found that of the
250,000 cells seeded, a median number of 9 cultured EPCs
per patient migrated in response to VEGF (IQR: 4 — 23,
Fig. 2c). We next assayed the number of apoptotic cul-
tured EPCs using terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) staining, finding that
4.2 % of EPCs per patient were apoptotic (IQR: 2.2 — 7.7,
Fig. 2d and e).

Relationship between EPC parameters and LV structure
and function

We next analyzed for potential relationships between
circulating CD34" EPC numbers, cultured EPC function,
and cardiac structural and functional parameters. Corre-
lations between CD133" and CD34"CD133" cell num-
bers and LV structure and function were not performed
as many patients had undetectable numbers of these
cells (9 for CD133" and 38 for CD34"CD133"). No sig-
nificant correlation could be demonstrated between any
of the flow cytometric or functional EPC parameters we
measured and left ventricular mass, left ventricular mass
index, or left ventricular ejection fraction (Table 3). LV
end-systolic and end-diastolic volumes showed a nomin-
ally significant positive correlation with VEGEF-induced
EPC migratory ability. LV end-systolic volume also was
nominally inversely correlated with in vitro EPC differ-
entiation potential. No other significant correlations were



Lineen et al. Canadian Journal of Kidney Health and Disease (2015) 2:25

Table 1 Clinical, biochemical and hematologic parameters
(n =47 patients)

Height (cm) 167 + 11
Weight (kg) 73+20
Dialysis vintage (months) 44 + 44
Diabetes mellitus 45 %
History of coronary artery disease 28 %
History of cerebrovascular disease 6 %
History of peripheral vascular disease 17 %
AV fistula 68 %
Supine pre-dialysis systolic blood pressure (mmHg) 143 +17
Supine pre-dialysis diastolic blood pressure (mmHg) 79+9
Standing pre-dialysis systolic blood pressure (mmHg) 147 +20
Standing pre-dialysis diastolic blood pressure (mmHg) 83+10
Inter-dialytic weight gain (L) 27+09
Medication use

ASA 62 %

ACE inhibitor 42 %

Angiotensin Il receptor blocker 49 %

Statin 51 %

ESA 98 %
PRU 74£10 %
Plasma albumin (g/L) 34+5
Plasma calcium (mmol/L) 2.16+0.20
Plasma phosphate (mmol/L) 1.75+053
Plasma alkaline phosphatase (1U/L) 153+210
Hemoglobin (g/L) 113+12
Plasma ferritin (pM) 396+ 313
Total iron saturation 24+11 %
Fasting total cholesterol (mmol/L) 403+0.70
Fasting LDL cholesterol (mmol/L) 201+£043
Fasting HDL cholesterol (mmol/L) 1.09+0.30
Fasting triglycerides (mmol/L) 208+ 1.15

Values are Mean (or median) +/— SD (or interquartile range)
PRU Percent reduction of Urea

found between any of the measured EPC parameters and

left ventricular volumes (Table 3).

Discussion
In the setting of normal renal function, EPCs are mobi-
lized from the bone marrow and the reticulo-endothelial

Table 2 Left ventricular structural and functional parameters

Left ventricular mass (g) 123+38
Left ventricular mass index (g/mz) 68+ 15
Left ventricular end systolic volume (mL) 66 + 34
Left ventricular end diastolic volume (mL) 158 £56
Left ventricular ejection fraction 59+10 %

Data are presented as mean * standard deviation
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system in response to stimuli such as endothelial injury
and ischemia to provide pro-angiogenic support [18, 32,
33]. In patients with CKD, however, the number of
circulating EPCs in peripheral blood is generally reduced,
and the ability of these cells to migrate in response to EPC
chemoattractants is severely impaired [23-27, 34]. To
date, however, no study has examined whether the sys-
temic mobilization and/or function of EPCs induced by
clinically relevant stimuli such as pressure overload,
volume overload, and cardiac ischemia are retained in
ESRD. In our cohort of prevalent conventional hemo-
dialysis patients, we failed to demonstrate major rela-
tionships between LV structure and function, and
parameters of EPC number and function, suggesting
that in our chronic dialysis patients, LV injury does not
retain its stimulatory effects on EPCs.

In the heart and other organs, tissue ischemia is a
potent stimulus for EPC mobilization, a response that
leads to compensatory angiogenesis and/or endothelial
repair in the injured tissue [11, 12, 35-40]. As the left
ventricle hypertrophies, cardiac ischemia develops be-
cause of the increased oxygen demand and diffusion
distance that are a consequence of cardiomyocyte
enlargement [19-21]. This ischemia is amplified by
hemodialysis in part due to the rapid changes in intra-
vascular volume induced by ultrafiltration [41, 42]. In
line with these findings, LVH-induced cardiac ischemia
was shown to be a potent stimulus for EPC mobilization
in healthy rodents with normal renal function following
induction of left ventricular pressure overload [18, 43].

Interestingly, in the only study to similarly assess the
effects of LVH on EPC mobilization in humans, Lee et al.
found that patients with hypertension and LVH had re-
duced EPC number and adhesive function compared with
hypertensive patients without LVH [44]. In this study,
LVH patients were also noted to have greater urinary
albumin excretion and a trend towards more circulating
apoptotic endothelial microparticles, suggesting enhanced
systemic endothelial injury and/or a reduced capacity for
repair [44]. Importantly, the processes that likely contrib-
uted to this endothelial injury, such as diabetes [45],
vascular disease [46], and smoking [47, 48], also impair
EPC mobilization. Thus, while it is possible that LVH
adversely affects EPC biology directly, in the context of
rodent studies demonstrating that LVH-induced cardiac
ischemia mobilizes EPCs, it is more likely that EPC
number was reduced in these patients due to other pro-
cesses that are known to compromise EPC mobilization.
The results of our study are consistent with this hypothesis,
as we demonstrate that EPC mobilization and function are
impaired in ESRD patients on conventional hemodialysis,
in whom endothelial injury is pronounced [49].

Although initially described to mediate their pro-
angiogenic effects primarily through direct incorporation
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Fig. 1 Quantification of circulating EPCs. Circulating EPCs from freshly collected peripheral venous blood were quantified by flow cytometry using
antibodies against CD34 and CD133. a CD34" cells. b CD133" cells. ¢ CD347CD133" cells. Abbreviations: PBMC, peripheral blood mononuclear cell. Each
dot represents a value for an individual patient

into nascent capillaries during angiogenesis in ischemic
tissues [11, 12], the exact mechanism(s) by which EPCs
mediate their benefits has been the subject of intense
controversy over the last decade [50, 51]. With growing
evidence suggesting that the vast majority of these cells
likely do not incorporate as mature endothelial cells at
sites of angiogenesis [52], the emerging consensus is that
these cells mediate their effects primarily through the
release of soluble factors with paracrine, or even endo-
crine, modes of action [13, 17, 50, 53, 54]. Despite these
controversies, mobilization of endogenous EPCs into the
circulation, as occurs following the development of LVH
in mice with normal renal function [18], is important for
their pro-angiogenic function as enhancement of this
mobilization can accentuate angiogenesis [55]. Similarly,
EPC dysfunction, as measured by in vitro assays such as
the VEGF-induced migration system used in this study,
has also been associated with increased cardiovascular
risk [22, 46, 56]. Taken together, the mobilization of
functional EPCs in response to endothelial injury ap-
pears to be a protective mechanism to maintain tissue
homeostasis. In the current study, we were unable to
detect major correlations between parameters of LV
structure and function and markers of EPC number and
function in our chronic dialysis cohort. As LVH is com-
mon in ESRD and is associated with cardiac capillary
rarefaction and ischemia, it is tempting to speculate that
the inability of LV injury to trigger functional EPC
mobilization may contribute to further capillary loss
and LV damage in dialysis patients. Future mechanistic
studies, such as an examination of EPC mobilization in
response to transient cardiac ischemia (eg. induced by
hemodialysis [41, 42] or persantine infusion), will be
required to directly test this hypothesis.

Since their initial discovery in 1997 [12], the criteria
by which EPCs are defined have been the subject of
intense controversy and ongoing evolution. Conven-
tionally, EPCs have been defined using flow cytometric

analysis of circulating cells expressing various surface
markers. As the numbers of these cells are generally quite
low in the systemic circulation, investigators have devel-
oped culturing protocols to expand this pro-angiogenic
cell population to enable functional assessment [12, 30,
51]. Unfortunately, a consensus on which markers to use
for EPC identification has not yet been reached. Moreover,
culture-expanded EPCs likely are a heterogeneous popula-
tion of cells, the active components of which are still being
investigated [50, 51]. Recognizing these ongoing contro-
versies, we chose to study cells expressing CD34 and/or
CD133, surface proteins that have emerged as markers of
a pro-angiogenic population of bone marrow-derived
mononuclear cells [11, 57-60]. Similar to prior studies, we
also cultured PBMCs using published protocols that
expand this CD34" and/or CD133" pro-angiogenic
population [30, 50, 51]. While technical differences
between studies can make comparisons difficult, it is
reassuring to note that our results are in line with a pre-
vious study in CKD patients, which demonstrated that
CD34" cells accounted for 0.05-0.14 % of all PBMCs
(compared to 0.14 % of all PBMCs in our study) [61].
Similarly, while we did not include a healthy control
group in our study, our patients had, as expected, lower
levels of circulating CD34" cells when compared to pre-
viously reported CD34" cell levels in healthy controls
(0.18-0.19 %) [62, 63].

In addition to the uremic environment, many other
factors are known to regulate the mobilization and func-
tion of circulating EPCs. Importantly, a number of medi-
cations commonly used by ESRD patients promote EPC
mobilization, including angiotensin converting enzyme
(ACE) inhibitors, statins, and erythropoiesis-stimulating
agents (ESA). As nearly half of our patients were taking
ACE inhibitors and statins, and nearly all were taking
ESAs, it is possible that use of these agents may have
impacted our findings, potentially masking a stimulatory
effect of LVH on EPC mobilization. Future studies, with
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Fig. 2 Assays of EPC function. Cultured EPCs were grown from peripheral blood mononuclear cells as described in the Methods section, and

then stained with the isolectin B4 Ulex europaeus agglutinin | to measure their in vitro endothelial differentiation potential. Representative images
are shown in (a). Original magnification 20X. In (b), the in vitro EPC differentiation potential of each individual patient is represented by a dot. In
(c), 250,000 EPCs were seeded in inserts that were placed in wells of a Boyden companion plate containing VEGF 100 ng/mL in the lower chamber.
The number of cells migrating through the 8 um pore size insert was counted after 4 h. Each dot represents the value for an individual patient.

Apoptosis of cultured EPCs was also quantified using TUNEL staining. In

(d), each dot represents the percentage of apoptotic EPCs for an

individual patient. In (e), representative TUNEL stained images are shown. Original magnification 20X

careful documentation of medication dosage, will be re-
quired to examine this question in more detail.

Our study has a number of limitations. Firstly, as this
study utilized the baseline data from a prospective obser-
vational study evaluating the effects of conversion from
conventional to in-centre nocturnal hemodialysis, we did
not include a healthy hypertensive control group of
patients as a comparison. As described above, however,
multiple studies have previously demonstrated that the
number and function of circulating EPCs are reduced in

patients with CKD [23-27]. Instead, we sought to deter-
mine whether the severity of LVH, a stimulus for cardiac
angiogenesis, along with downstream structural and
functional parameters affected by LVH and its complica-
tions, might correlate with EPC number and/or function,
reasoning that more severe cardiac stress should be a
stronger stimulus for mobilization of functional EPCs.
We found, instead, that in our chronic dialysis cohort,
markers of LV injury did not show any major relation-
ships with circulating EPC number or function. While
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Table 3 Correlation analyses between EPC parameters and LV structure and function

CD34" (%) # of migrated cells # of UEA-1 lectin® cells # of TUNEL" cells
LV mass (g) 0.20 0.28 -0.06 -0.12
p=0.18 p=008 p=077 p=048
LVMI (g/m?) 0.10 0.12 -002 -0.16
p =049 p =046 p=091 p=038
LV end-systolic volume (mL) -0.03 0.40 -0.19 -0.04
p=0.85 p=0.01 p=003 p=0.84
LV end-diastolic volume (mL) 0.02 035 -0.20 -0.12
p=0388 p=003 p=032 p=052
LV EF (%) 0.16 -023 0.13 -017
p=027 p=0.15 p =050 p=035

Spearman’s co-efficient and associated p value are presented

we did demonstrate nominally significant positive corre-
lations between LV volumes, VEGEF-induced EPC migra-
tory ability, and in vitro EPC differentiation potential,
these findings are difficult to explain as neither EPC
migratory ability nor EPC differentiation potential asso-
ciated with other related, clinically relevant parameters
such as LV ejection fraction and mass. Taken together,
while it is possible that LV dilatation may be associated
with changes in EPC function, it is likely that these find-
ings are due to the effects of uncontrolled confounders.
Larger and more detailed mechanistic studies will be
required to definitively examine whether LV injury is
associated with changes in EPC biology.

Secondly, while we measured a number of important
EPC functions, such as their migratory ability and differ-
entiation potential, we were unable to examine other
relevant parameters. Specifically, EPCs can adhere to
areas of endothelial injury, promote capillary network
formation by endothelial cells, and even participate in
the formation of these networks [12, 14, 64]. Unfortu-
nately, due to the limited volume of blood we could
sample, and the poor growth potential of EPCs isolated
from uremic patients, we did not have sufficient numbers
of cultured cells to examine for potential relationships
between LV structure and function and these additional
parameters.

Thirdly, we were not able to examine cardiac expres-
sion of EPC chemoattractants such as VEGE, and so we
were not able to determine whether the failure of more
severe LVH to mobilize greater numbers of functional
EPCs was due, in part, to reduced expression of cardiac
recruitment signals. Previous reports, however, have
found that EPCs cultured from both pre-dialysis CKD
and dialysis-requiring ESRD patients demonstrate im-
paired VEGF-induced migration, suggesting that our
findings might be in part explained by impairments in
EPC responsiveness. Finally, because our cohort con-
sisted predominantly of patients with preserved LV

systolic function, it would be difficult to demonstrate a
significant correlation between EPC parameters and
ejection fraction, even if such a relationship existed.

Conclusion

Left ventricular hypertrophy is a common complication
of ESRD that is associated with poor cardiovascular out-
comes such as systolic and diastolic dysfunction. LVH
and many of its associated cardiac complications are
driven in part by a progressive capillary deficit created
by cardiomyocyte hypertrophy [7, 8, 65], a process
which is accelerated in ESRD [66]. Early outgrowth pro-
angiogenic cells are mobilized into the circulation and
recruited to sites of ischemia to promote compensatory
angiogenesis. As cardiomyocyte hypertrophy is the prin-
cipal factor driving cardiac ischemia in LVH, we rea-
soned that the severity of LVH and its complications
should be proportional to the degree of ischemia, and
thus to circulating EPC number. In our cohort of preva-
lent conventional hemodialysis patients, however, we
were unable to detect major relationships between LV
mass, LV volumes, and LV ejection fraction and circu-
lating EPC number and/or function, suggesting that in
ESRD, the compensatory EPC response is blunted. Our
data thus add to the growing literature documenting the
potential adverse cardiovascular effects of ESRD-associated
EPC dysfunction.
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