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Abstract

Purpose of review: Bidirectional inter-organ interactions are essential for normal functioning of the human body;
however, they may also promote adverse conditions in remote organs. This review provides a narrative summary of
the epidemiology, physiopathological mechanisms and clinical management of patients with combined renal and
cardiac disease (recently classified as type 3 and 4 cardiorenal syndrome). Findings are also discussed within the
context of basic research in animal models with similar comorbidities.

Sources of information: Pertinent published articles were identified by literature search of PubMed, MEDLINE
and Google Scholar. Additional data from studies in the author’s laboratory were also consulted.

Findings: The prevalence of renocardiac syndrome throughout the world is increasing in part due to an aging
population and to other risk factors including hypertension, diabetes and dyslipidemia. Pathogenesis of this
disorder involves multiple bidirectional interactions between the kidneys and heart; however, participation of other
organs cannot be excluded. Our own work supports the hypothesis that the uremic milieu, caused by kidney
dysfunction, produces major alterations in vasoregulatory control particularly at the level of the microvasculature
that results in impaired oxygen delivery and blood perfusion.

Limitations: Recent clinical literature is replete with articles discussing the necessity to clearly define or characterize
what constitutes cardiorenal syndrome in order to improve clinical management of affected patients. Patients are
treated after onset of symptoms with limited available information regarding etiology. While understanding of
mechanisms involved in pathogenesis of inter-organ crosstalk remains a challenging objective, basic research data
remains limited partly because of the lack of animal models.

Implications: Preservation of microvascular integrity may be the most critical factor to limit progression of
multi-organ disorders including renocardiac syndrome. More fundamental studies are needed to help elucidate
physiopathological mechanisms and for development of treatments to improve clinical outcomes.
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Abrégé

Objectifs de la révision: Les interactions bidirectionnelles entre organes adjacents sont essentielles au bon
fonctionnement du corps humain mais sont aussi susceptibles de provoquer des conditions adverses sur des
organes plus éloignés. Cette revue offre un compte rendu sommaire de l’épidémiologie, des mécanismes
physiopathologiques et du traitement clinique des patients atteints à la fois d’insuffisance rénale et de cardiopathie,
ou tel que récemment désignés, atteints du syndrome cardiorénal de type 3 ou de type 4. La revue examine
également des résultats obtenus en recherche fondamentale en utilisant des modèles animaux présentant des cas
similaires de comorbidité.

Sources: Les articles pertinents ont été répertoriés à la suite d’une recherche dans la littérature sur PubMed,
MEDLINE et « Google Scholar ». Des données complémentaires provenant d’études du laboratoire de recherche de
l'auteur ont aussi été consultées.

Constatations: Le vieillissement de la population en plus de facteurs de risque incluant l’hypertension, le diabète
et la dyslipidémie augmente en partie la prévalence du syndrome cardiorénal à travers le monde. La pathogenèse
de ce désordre implique de multiples interactions bidirectionnelles entre le cœur et les reins; cependant, la
participation d’organes périphériques n’est tout de même pas à exclure. Nos travaux soutiennent l’hypothèse selon
laquelle l’environnement urémique résultant de la dysfonction rénale serait responsable d’altérations majeures dans
la régulation de la pression, particulièrement au niveau des microvaisseaux. En résultent une perfusion sanguine
altérée et une distribution insuffisante d’oxygène vers les organes.

Limites de l’étude: La littérature clinique récente comporte de nombreux articles traitant de la nécessité d’identifier
et de caractériser de façon plus élaborée les causes du syndrome cardiorénal dans la perspective d’améliorer le
traitement clinique des patients qui en sont atteints. Par contre, puisqu’il existe encore très peu d’informations sur
l’étiologie du syndrome cardiorénal, les patients ne sont pris en charge qu’après son apparition. Qui plus est, la
compréhension des mécanismes impliqués dans la pathogenèse résultant des interactions entre organes demeure
un objectif difficile à atteindre, en partie parce que la recherche fondamentale est limitée étant donné la rareté des
modèles animaux pour cette pathologie.

Conséquences: À la lumière des données disponibles à ce jour, il apparait que la préservation de l’intégrité du
système vasculaire, particulièrement au niveau des microvaisseaux, est un facteur-clé pour restreindre le
développement de désordres impliquant plusieurs organes tel le syndrome cardiorénal. Davantage d’études en
recherche fondamentale sont requises pour faire la lumière sur les mécanismes physiopathologiques de ce syndrome
et développer des traitements efficaces pour en améliorer les résultats cliniques.

What was known before
Co-existence of kidney and cardiac disorders is
increasingly prevalent throughout the world. A major
consequence of failing kidneys is the stimulation of
metabolic and humoral pathways that cause injury to
remote organs; a similar scenario occurs with disorders of
other organs such as the heart and liver. Mechanisms
responsible for disease progression, regardless of the organ
initially affected, are complex; understanding the mech-
anisms and pathways involved in, or responsible for
inter-organ crosstalk, is a growing area of research
interest. Clinical management of cardiorenal syndrome
patients is particularly complex due to the involvement
of multiple organs and the difficulty in targeting
specific symptoms.

What this adds
Herein, we review recent advances concerning physiopa-
thology, therapeutic interventions and complications of
renocardiac syndrome. Recent data, including our own,

from animal models are discussed here; primary focus is
on the impact of acute kidney injury on systemic
hemodynamics, blood flow regulation and endothelial
function. Novel therapies that target the microcircula-
tion could benefit renocardiac syndrome patients and
improve mortality.

Introduction
Evaluation of underlying causes and physiopathological
mechanisms responsible for kidney related disorders
represents a significant challenge. Kidney and heart
disease often co-exist; the heart is highly dependent on
regulation of salt and water content by the kidneys that
directly depend on blood flow and pressure generated by
the heart. Functional deterioration of either organ initi-
ates a vicious spiral of events that leads to multi-organ
failure. Although prevalence of renal dysfunction in pa-
tients with heart disease is well known [1, 2] it remains
unclear whether kidney failure is a passive response to
failing cardiac performance. The co-existence of cardiac
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and renal pathologies in the same patient, referred to as
cardiorenal syndrome (CRS) since 2004, is the subject of
many contemporary studies. Furthermore, the concept
of organ-to-organ crosstalk and the development of
multi-organ dysfunction is more widely accepted. Clinical
classification of CRS (cf. Table 1) is based on primary
organ dysfunction; classification criteria have recently
been reviewed by the Acute Dialysis Quality Initiative
(ADQI) Working Group [3–6].
Herein, we provide a narrative review of clinical and

basic science literature on renocardiac syndrome (type
3 and type 4 CRS) with regard to epidemiology, patho-
genesis and clinical interventions designed to improve
outcomes. Clinical and basic science reports were
searched using MEDLINE and PubMed with the key-
words reno-cardiac syndrome, kidney disease, heart
disease and combinations thereof.
Type 3 CRS is usually triggered by an episode of acute

kidney injury (AKI); nephrons are particularly sensitive
to ischemia and blood borne toxins. AKI is often super-
imposed on chronic renal disease and could be a neces-
sary precursor of end-stage renal disease. Elucidation of
mechanisms remains difficult due to the complex inter-
play between chronic and acute kidney disease pheno-
types [7]. Acute worsening of kidney function ultimately
produces cardiac dysfunction (i.e. acute decompensated
heart failure, acute myocardial infarction and arrhythmias)
[8]. The overall incidence of AKI in the general population
appears to be increasing [9] based on Risk, Injury, Failure,
Loss, End-stage kidney disease classification (RIFLE)/
Acute kidney injury network (AKIN) criteria [10] that use
change in serum creatinine and urinary output as primary
markers of kidney dysfunction.
Type 4 CRS, on the other hand, involves chronic ab-

normalities of renal function due in part to aging, dia-
betes, hypertension and dyslipidemia that progresses
to multi-organ disease [11] possibly due to toxic
effects of elevated uremia levels. Cardiovascular dis-
ease is highly prevalent in these patients and accounts
for the majority of cardiac-related deaths (secondary
to ischemia) [12].

Epidemiology and risk factors
In the UK, The National Confidential Enquiry into
Patient Outcome and Death (http://www.ncepod.org.uk)
survey, published in 2009, discovered a systematic failure

by hospital staff to recognize complications of AKI
which ultimately resulted in poor clinical outcomes. The
report also underscored the importance of preventing
all-cause early transient malfunction of the kidneys due
to irreversible structural damage. Even though almost 20
million American adults are known to be affected by
some form of kidney disease [13] the proportion with
Type 3 CRS (consequent to AKI) is not documented.
Common risk factors responsible for acute renocardiac
syndrome are summarized in Table 2. Cardiovascular
related mortality is significantly elevated in patients with
AKI [14, 15]. A prospective Spanish multicenter study
almost a decade ago examined the relation between
acute kidney failure and multi-organ failure and reported
a significant increase in mortality (~30 %) in relation to
the number of failed organs; that study was performed
using intensive care unit and non-intensive care unit
patients [16]. Surgery patients are also a high risk group
for AKI due to the potential for marked renal hypoper-
fusion; [17] patients undergoing coronary artery bypass
grafting with minor increases in post-operative serum cre-
atinine had a higher occurrence of myocardial infarction
and a 3-fold rise in long term risk of end-stage renal
disease [18, 19]. Iodinated radiographic contrast media,
commonly used for various clinical applications in
patients with comorbidities, can also elicit significant
kidney injury. Additional risk factors recently suggested
to contribute to development of AKI-related pathology
include body mass index, [20] proteinuria [21, 22] and
microalbuminuria [23].
Clinical evaluation of Type 4 CRS is more obvious;

responsible for almost 50 % of deaths in all age groups
of CKD patients [24, 25]. Indeed, it has been suggested
that CKD (see Table 3 for risk factors) be included on
the listing of criteria for patients with high risk of coron-
ary events [26, 27]. Defining the epidemiology of Type 4
CRS is problematic and clinical diagnosis of these patients
is difficult due to variants in: 1- populations-at-risk, 2-
clinical outcomes evaluated, 3- timeframes to determine
study end-points and 4- definitions for CKD, cardiac
disease and mortality [28]. However, higher hazard ratios
for cardiovascular events and all-cause mortality in rela-
tion to decreases in glomerular filtration rate have been
reported [29, 30]. A joint study by the United States Renal
Data System and the National Registry of Myocardial
Infarction reported a lower likelihood of chest pain in

Table 1 Cardiorenal syndrome classification

Type 1 (acute cardio-renal syndrome) Abrupt deterioration of cardiac function that results in acute kidney injury (AKI)

Type 2 (chronic cardio-renal syndrome) Chronic abnormalities of cardiac function leading to progressive chronic kidney disease (CKD)

Type 3 (acute reno-cardiac syndrome) Abrupt and primary worsening of kidney function that initiates acute cardiac dysfunction

Type 4 (chronic reno-cardiac syndrome) CKD that promotes reduction of cardiac function

Type 5 (secondary CRS) Systemic disorders that impair both cardiac and renal function
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advanced CKD compared to non-CKD patients [31].
Finally, patients with CKD are less likely to receive
evidence-based therapies because of their atypical
clinical presentation profiles [32–34].

Mechanisms
Studies of the physiopathological evolution of kidney
injury, either acute or chronic, in humans are rare pos-
sibly because of the common misconception that tubular
regeneration occurs in patients after AKI [35–38]. This
is based primarily on evidence of normalisation of serum
creatinine levels. Potential mechanisms for Type 3 and 4
CRS are categorized on the basis of hemodynamic or
non-hemodynamic criteria [5].

Hemodynamic factors
Cardio-renal interactions are generally explained using
extracellular fluid volume homeostasis and blood pres-
sure control criteria [39]. Consequences of heart failure
including reduced cardiac output and blood pressure
stimulate both the sympathetic nervous and renin-
angiotensin systems which results in volume expansion;
[40, 41] the latter allows restoration of renal perfusion.
Data for kidney hemodynamics and segmental sodium
handling are limited for patients with combined heart
and renal failure. However, bi-directional coupling be-
tween dysfunctional heart and kidneys induces sodium
and water retention that ultimately exacerbates heart
failure by affecting arterial pressure (lower) and renal
venous pressure (higher). Treatment success rates in
patients presenting with heart and kidney failure is miti-
gated. Additional data on the role of hemodynamic
factors in progression of acute and chronic renocardiac
syndrome can be obtained in animal models where the

relation between renal venous pressure, renal blood flow,
[42] intra-tubular pressure [43, 44] and glomerular filtra-
tion rate [45] has been established.
Progressive kidney dysfunction associated with chronic

kidney disease, without either pharmacologic or non-
pharmacologic intervention, ultimately results in multiple
organ failure. Acid–base and electrolyte imbalance, fluid
overload, atrial distension, hematologic dysfunction and
diminished capacity to eliminate drugs all contribute.
Physiopathologic mechanisms responsible for commu-
nications between kidney injury and cardiac dysfunc-
tion remain to be established; however, reduced cardiac
performance ultimately limits blood perfusion of all
organs including the kidneys and thereby contributes to
renal injury. AKI affects the heart either 1- directly or
2- by limiting remote organ function which then indir-
ectly influences cardiac function (cf. Fig. 1).

Non-hemodynamic factors
In addition to the proposed hemodynamic factors, various
cardiorenal connectors may activate endogenous systems
after AKI and contribute to progression of symptoms.
These include, but are not limited to, the sympathetic
nervous, renin-angiotensin aldosterone and coagulation
systems, [46] inflammation, oxidative stress and nitric
oxide equilibrium.
For type 3 CRS, AKI (due to acute arterial ischemia-

reperfusion injury, or other causes) produces rapid and
significant functional changes in the heart characterized
by LV dilatation and alterations of various functional
parameters including LV relaxation time, fractional
shortening and end-systolic and end-diastolic fractional
shortening. Cardiocyte apoptosis has been suggested to
play a role in promoting these changes along with stimu-
lation of inflammatory mediators. Ischemia initiates a
cascade of inflammation that is crucial to organ repair
and if unchecked, eventual deterioration of organ func-
tion. In rodent models of acute and chronic kidney
disease, the role of inflammation is predominant as
evidenced by greater secretion of pro-inflammatory cyto-
kines and infiltration of inflammatory cell types [47, 48].
The neuroendocrine system also plays an important role
in physiopathology of type 3 CRS; complex pathways are
activated after onset of AKI resulting in activation of the
systemic nervous and renin-angiotensin systems. While
activation of the systemic nervous system initially
protects cardiac output it also appears to stimulate
apoptosis, [49] neointimal formation and affects immune
system function [8]. In addition, activation of the renin
angiotensin system stimulates renin secretion by the kid-
neys; it also leads to dysregulation of extracellular fluid
volume and vasoconstriction which can exacerbate the
effects of ischemia by limiting adequate oxygen delivery.

Table 2 Risk factors for AKI

Renal artery stenosis (ischemia-reperfusion injury)

Myocardial infarction

Surgical interventions (including anesthesia)

Trauma

Intrinsic/extrinsic ureteral obstruction

Dehydration

Infection (gastroenteritis, etc.)

Drug-related complications (pharmacologic toxicity, drug-abuse, etc.)

Table 3 Possible risk factors for CKD

AKI (all cause)

Hypertension, cardiovascular and hepatic disease

Diabetes

Age, gender, race

Obesity, smoking
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Mechanisms involved in type 4 CRS are multi-faceted
and invariably shared by different organs because of
vascular disease and endothelial dysfunction as well as
the cumulative toxic influences of uremia. A plethora of
risk factors in these patients contributes to progression
of cardiac and kidney failure; unique risks are also
associated with dialysis procedures particularly in pa-
tients with end-stage renal disease [50]. A recent review
by House provides an exclusive summary of potential
mechanisms [24]. The role of the uremic milieu in develop-
ment of multi-organ dysfunction still needs to be appraised;
specific uremic toxins (guanidines, phenols, parathyroid
hormone, proinflammatory cytokines, etc.), or combina-
tions thereof, could directly cause metabolic and physio-
logic derangements and contribute to progression of the
disease phenotype. In patients with congestive heart failure
and progressive renal insufficiency, pressure and volume
overload result in augmented cardiac work and compensa-
tory hypertrophy (in part due to cardiac and renal fibrosis).
Under these conditions oxygen delivery to enlarged myo-
cytes is compromised due to vascular remodeling at the
level of the microvasculature; this focal underperfusion or
maldistribution of blood aggravates cellular injury.
Using a two-stage subtotal nephrectomy uremia model

(AKI by permanent occlusion of renal artery branches
that produces type 3 CRS) we have been able to provide
evidence for significant perfusion abnormalities across
the ventricular wall in relation to severity of kidney
dysfunction (assessed by serum creatinine) [51]. In
normal animals myocardial blood flow increases in a
dose-dependent fashion during dobutamine challenge
(i.e. increased cardiac work); however, in uremic dogs
even low-dose dobutamine maximally increased myocar-
dial blood flow and oxygen transport (cf. Fig. 2). On the

Fig. 1 Schematic of pathways for kidney injury leading to heart and multi-organ failure

Fig. 2 Change in LV oxygen transport versus hematocrit (Hct) for
control dogs (n= 5, open circle) at baseline, dobutamine-5 (5 μg/Kg/min;
open triangle) and dobutamine-10 (10 μg/Kg/min; open square). Stage 1
CKD (n= 5, closed symbols and stage 2 CKD (n= 5, open dotted symbols)
are shown. In control dogs, LV oxygen transport increased in direct
relation to intravenous dobutamine levels. In dogs with Stage 1
or 2 CKD, maximal LV oxygen transport was achieved at the
lower dose of intravenous dobutamine compared to controls.
Data shown are means ± 1SD
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basis of these findings, we suggested the possibility of an
increased risk of adverse coronary events due to the loss
of transmural autoregulation and potential for maldistri-
bution of myocardial perfusion. Renal autoregulation has
also been shown to be significantly impaired during
CKD; [52] this would exacerbate injury due to limited
perfusion of blood. With more severe AKI we reported a
significant rightward shift of the coronary perfusion
pressure-blood flow relation and markedly blunted
vessel reactivity to endothelium dependent/independent
agonists; [53] these pre-clinical findings support the
hypothesis that increased levels of uremic toxins can
directly influence vasoregulation and endothelial func-
tion and thereby organ perfusion. The incidence of
mortality was also markedly higher in dogs with elevated
serum creatinine and blood urea nitrogen. Wang and
Bao recently reported a significant correlation between
serum uremia and endothelial dysfunction in rodents
with early kidney disease [54]. We believe that the
relevance of these findings to organ dysfunction merits
future investigation as endothelial dysfunction, vascular
calcification, and accelerated systemic inflammation all
contribute to increased vascular stiffness and alteration
of arterial pulse pressure and myocardial perfusion in
patients with end-stage renal disease [55, 56].
Continued investigation to determine the physiopatho-

logical mechanisms involved in development of renal
disease after AKI will require a multifaceted and bidirec-
tional approach. Identification of risk factors involved in
early kidney injury might be the most logical approach
to prevent and delay adverse outcomes; [57] as stated
earlier, vascular remodeling in the presence of uremic
toxins increases oxidative stress, inflammation and lipid
metabolism that exacerbates endothelial dysfunction.
Thus, prevention of early microvascular dysfunction may
be fundamental to limiting adverse effects of progressive
kidney and heart disorders.

Treatment strategies
Chuasuwan and Kellum recently reviewed different
treatment strategies specific to the kidneys and heart
based on RIFLE and AKIN criteria [8] that establish
different severity levels for AKI to enable prediction of
outcomes in affected patients. In high risk patients,
potentially nephrotoxic drugs must be avoided and
efforts should be directed to maintaining arterial pres-
sure and preventing volume overload. Three stages
(risk, injury, failure) of AKI were proposed. For stage
1 AKI patients, kidney function should be closely
monitored (i.e. using non-invasive diagnostic evalua-
tions). Stage 2 AKI presents particular challenges due
to elevated risk of mortality; fluid, electrolyte and
acid–base homeostasis is of particular concern. Stage
3 AKI is the most severe and life-threatening and

often requires extracorporeal kidney support or renal
replacement. Treatment strategies for the heart in
type 3 CRS pose a particular challenge; prevention of
LV volume overload is fundamental to limit the
potential for worsening cardiac and renal function.
Use of diuretics to improve clinical symptoms in
heart failure patients is the status quo; however, evi-
dence of a mortality benefit in patients with AKI
remains controversial [58–60]. Indeed, use of diuretics
for AKI is contra-indicated except for management of
volume overload [61, 62]. Clinical outcomes are also
improved using ultrafiltration and hemofiltration to
reduce volume overload in patients that are refractory
to diuretics.
Type 4 CRS patient management requires a multidis-

ciplinary approach because of the bidirectional, multifa-
ceted physiopathology of this syndrome; treatment
strategies are mostly targeted to risk factors such as
anemia, hypertension and malnutrition [63, 64]. How-
ever, for the most part , no specific treatment provides
unequivocal benefit since targeted risk factors comprise
only a small fraction of the physiopathological puzzle.
As such, a combination therapy approach is probably
needed to limit the devastating effects of this syndrome.
While there is no consensus for pharmacological

management of Type 3 or 4 CRS patients, there is
general agreement that more evidence-based clinical
studies are necessary. Numerous inotropes and vasodila-
tors including neurohormonal antagonists and diuretics
have been evaluated on the basis of their ability to
increase urine output and glomerular filtration and
lower serum creatinine (see recent review by Kim [65]).
Modest improvement of kidney function and survival
(OPTIME-HF [66]) has been reported with milrinone in
acute decompensated heart failure patients; renal perfu-
sion has been shown to be worse in acute renal failure
patients given dopamine alone [67]. On the other hand,
combined low-dosages of dopamine/furosemide appear
to be more useful due to improved renal function and
potassium homeostasis (DAD-HF [68]). Promising
results with regard to glomerular filtration have also
been shown with the calcium sensitizing phosphodiester-
ase inhibitor, levosimendan (SURVIVE [69]), but its
overall usefulness in patients with acute heart failure
remains to be established and questions persist regard-
ing their ability to improve kidney function and long-
term survival. Vasopressin antagonists reduce symptoms
in patients with hyponatremia and oliguria (EVEREST
[70]) and adenosine receptor blockers improve kidney
function. On the other hand, several clinical trials
(PROTECT [71], REACH-UP [72]) report no func-
tional benefit.
Angiotensin converting enzyme inhibitors could also

improve clinical outcomes (CONSENSUS [73]) but it is
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recommended that they be used cautiously. Mineralo-
corticoid receptor blockers that markedly improve
clinical outcomes in heart failure patients (RALES [74],
EPHESUS [75]) are contra-indicated when renal dys-
function is present due to the elevated risk of hyperkale-
mia. Statins appear to reduce all-cause mortality in mild
to moderate chronic kidney disease patients but may be
ineffective in end-stage renal disease [76]. Reduced al-
buminuria that has been reported in rodents [77, 78]
treated with statins affords significant renal protection;
however, clinical findings on this question remain
divided [79–81].
Non-pharmacologic treatments currently under investi-

gation in clinical and animal studies also include renal
denervation and remote conditioning. Renal denervation
has been studied over the past 25 years to counter
the effects of elevated renal sympathetic activity
which 1-stimulates beta-1 receptors in the juxtaglo-
merular apparatus to increase renin release, 2- acts
on alpha-1B receptors of the collecting ducts to
increase sodium reabsorption and 3- acts on alpha-1A
receptors of renal vasculature to promote vasocon-
striction [82].
Renal afferent nerves transmit sensory information

to the central nervous system from chemo- and
mechanoreceptors in the kidneys; activation of renal
afferent nerves is sympathoinhibitory in normal ani-
mals. Renal efferent nerves mediate changes in kidney
function via innervation of all essential renal struc-
tures (renal vessels, tubules, juxtaglomerular appar-
atus); [82] activation of these nerves results in water
retention, sodium reabsorption, reduced blood flow
and activation of the renin-angiotensin-aldosterone
system. Sympathoexcitatory reflexes are dominant in
patients with resistant hypertension and CKD but the
mechanisms involved in renal afferent activation are
yet to be established. Renal nerves could play a role
in renal inflammation and injury; suggested mechanisms
include β-adrenergic receptor activation (causing podocyte
injury), release of neuropeptides (neuropeptide Y, vaso-
active intestinal polypeptide, substance P, etc.) that
contribute to neuroimmune interactions, renin release
from juxtaglomerular cells (increases plasma angiotensin
II levels) and other pro-inflammatory cytokines including
tumor necrosis factor and IL-1β from immune cells. Renal
denervation has also been postulated to reduce kidney in-
jury by improving blood glucose levels [83]. Findings from
animal studies indicate that renal denervation mitigates
inflammation and kidney injury; [84] however the results
of clinical trials are inconsistent.
Two clinical trials, Simplicity HTN-1[85] and HTN-2

[86], report sustained reduction of blood pressure in
patients with resistant hypertension and preserved
renal function; [87] however, these beneficial effects

were not observed in patients from the Simplicity
HTN-3 trial [88]. Variability between studies with regard
to renoprotection by renal denervation is probably related
to differences in study design and primary endpoints.
However, interventions on renal nerves merit further inves-
tigation for clinical management of hypertension and heart
failure (i.e. major components of type 4 CRS phenotype).
Interestingly, renal denervation may not be applicable in
patients with AKI; numerous questions remain unanswered
regarding the role of renal nerves in progression of acute
renocardiac syndrome.
Remote conditioning stratagems (per-, pre- and post-

conditioning) are the subject of a number of ongoing
clinical trials (cf. ClinicalTrials.gov); numerous animal
investigations have reported significant protection of vul-
nerable organs against ischemic injury by remote condi-
tioning [89–93]. Ischemic tolerance of organs such as the
heart may be reduced in the presence of co-morbidities;
[32, 33, 94] larger myocardial infarcts occur in patients
with chronic kidney disease and may account for higher
mortality. In uremic rodents subject to different condi-
tioning protocols significant protection against ischemic
injury was observed; [95] similarly in a porcine model of
AKI remote conditioning afforded marked renoprotective
effects [96]. Remote limb-ischemia has also been shown to
alleviate contrast medium induced renal injury in patients
with moderate kidney disease [97] and even improved
kidney function when performed prior to kidney trans-
plantation in patients [98]. Whether organ conditioning
stratagems could be useful in patients with acute renocar-
diac syndrome warrants further investigation; [99] patients
with moderate chronic kidney disease have been reported
to respond to remote conditioning [100]. These positive
findings may be critical to improve outcomes in patients
subject to renal replacement therapies. Ongoing clinical
trials (The Context trial, clinicaltrials.gov NCT01395719,
and the REPAIR Trial, ISRCTN30083294) should pro-
vide additional data regarding the potential usefulness
of conditioning strategems for patients with renocar-
diac syndrome.

Conclusions
Bi-directional communication between the heart and
kidneys occurs through various pathways that, in healthy
subjects, modulate cardiac output, vessel tone, volume
status and excretion of metabolic waste compounds. It is
increasingly apparent that pathological changes in one
organ can instigate the release of a cascade of mediators
that promote secondary dysfunction or injury in another
distant organ. Further controlled clinical and more
robust fundamental research is necessary to clarify
existing contradictory findings and to improve under-
standing of mechanisms responsible for development of
inter-organ pathologies.
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